Project description:Identification and expression analysis of microRNAs in infected larvae of the insect model Galleria mellonella with uropathogenic (UPEC) and commensal E. coli strains that are known to cause symptomatic and asymptomatic bacteriuria (ABU) in humans, respectively.
2018-12-18 | GSE123965 | GEO
Project description:Symptomatic and asymptomatic Escherichia coli bacteriuria isolates
| PRJNA701152 | ENA
Project description:Impact of Bacteriuria and Inflammation on Hospitalization Duration of Spinal Cord Injury Patients
Project description:Summary: Spinal cord injury (SCI) is a damage to the spinal cord induced by trauma or disease resulting in a loss of mobility or feeling. SCI is characterized by a primary mechanical injury followed by a secondary injury in which several molecular events are altered in the spinal cord often resulting in loss of neuronal function. Analysis of the areas directly (spinal cord) and indirectly (raphe and sensorimotor cortex) affected by injury will help understanding mechanisms of SCI. Hypothesis: Areas of the brain primarily affected by spinal cord injury are the Raphe and the Sensorimotor cortex thus gene expression profiling these two areas might contribute understanding the mechanisms of spinal cord injury. Specific Aim: The project aims at finding significantly altered genes in the Raphe and Sensorimotor cortex following an induced moderate spinal cord injury in T9.
Project description:Patients carrying one or two ApoE4 alleles suffer from worse functional recovery after spinal cord injury. Using transgenic mice expression human ApoE3 or ApoE4 we investigated potential cellular mechanisms of reduced recovery after spinal cord injury. Bulk RNA sequencing of the spinal cord lesion site followed by pathway enrichment analysis predicts that ApoE4 mice have a higher inflammatory and extracellular matrix remodeling activity 7 days after spinal cord injury. Contrary, higher activities for neuronal projection and action potential patways were predicted in the ApoE3 mice at 21 days after injury.
Project description:Adult zebrafish have the ability to recover from spinal cord injury and exhibit re-growth of descending axons from the brainstem to the spinal cord. We performed gene expression analysis using microarray to find damage-induced genes after spinal cord injury, which shows that Sox11b mRNA is up-regulated at 11 days after injury. However, the functional relevance of Sox11b for regeneration is not known. Here, we report that the up-regulation of Sox11b mRNA after spinal cord injury is mainly localized in ependymal cells lining the central canal and in newly differentiating neuronal precursors or immature neurons. Using an in vivo morpholino-based gene knockout approach, we demonstrate that Sox11b is essential for locomotor recovery after spinal cord injury. In the injured spinal cord, expression of the neural stem cell associated gene, Nestin, and the proneural gene Ascl1a (Mash1a), which are involved in the self-renewal and cell fate specification of endogenous neural stem cells, respectively, is regulated by Sox11b. Our data indicate that Sox11b promotes neuronal determination of endogenous stem cells and regenerative neurogenesis after spinal cord injury in the adult zebrafish. Enhancing Sox11b expression to promote proliferation and neurogenic determination of endogenous neural stem cells after injury may be a promising strategy in restorative therapy after spinal cord injury in mammals. Spinal cord injury or control sham injury was performed on adult zebrafish. After 4, 12, or 264 hrs, a 5 mm segment of spinal cord was dissected and processed (as a pool from 5 animals) in three replicate groups for each time point and treatment.
Project description:Peripheral blood -derived nucleated cells from patients with acute spinal cord injury 24h, day 3, day 7 post-injury compared to healthy subjects