Project description:The importance and applications of polyploidy have long been recognized, from shaping the evolutionary success of flowering plants to improving agricultural productivity. Recent studies have shown that one of the parental subgenomes in ancient polyploids is generally more dominant - having both retained more genes and being more highly expressed - a phenomenon termed subgenome dominance. How quickly one subgenome dominates within a newly formed polyploid, if immediate or after millions of years, and the genomic features that determine which genome dominates remain poorly understood. To investigate the rate of subgenome dominance emergence, we examined gene expression, gene methylation, and transposable element (TE) methylation in a natural less than 140 year old allopolyploid (Mimulus peregrinus), a resynthesized interspecies triploid hybrid (M. robertsii), a resynthesized allopolyploid (M. peregrinus), and diploid progenitors (M. guttatus and M. luteus). We show that subgenome expression dominance occurs instantly following the hybridization of two divergent genomes and that subgenome expression dominance significantly increases over generations. Additionally, CHH methylation levels are significantly reduced in regions near genes and within transposons in the first generation hybrid, intermediate in the resynthesized allopolyploid, and are repatterned differently between the dominant and submissive subgenomes in the natural allopolyploid. Our analyses reveal that the subgenome differences in levels of TE methylation mirror the increase in expression bias observed over the generations following the hybridization. These findings not only provide important insights into genomic and epigenomic shock that occurs following hybridization and polyploid events, but may also contribute to uncovering the mechanistic basis of heterosis and subgenomic dominance.
Project description:Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140 year old naturally established neo-allopolyploid monkeyflower
| PRJNA378427 | ENA
Project description:Subgenome dominance in an interspecific hybrid, synthetic allopolyploid, and a 140 year old naturally established neo-allopolyploid monkeyflower
Project description:Polyploidy has played an extensive role in the evolution of flowering plants. Allopolyploids, with subgenomes containing duplicated gene pairs called homeologs, can show rapid transcriptome changes including novel alternative splicing (AS) patterns. The extent to which abiotic stress modulates AS of homeologs is a nascent topic in polyploidy research. We subjected both natural and resynthesized lines of polyploid Brassica napus, along with the progenitors B. rapa and B. oleracea, to infection with the fungal pathogen Sclerotinia sclerotiorum. RNA-seq analyses revealed widespread divergence between polyploid subgenomes in both gene expression and AS patterns. Resynthesized B. napus displayed significantly more A and C subgenome biased homeologs under pathogen infection than during uninfected growth. Differential AS (DAS) in response to infection was highest in natural B. napus (12,709 DAS events) and lower in resynthesized Brassica napus (8,863 DAS events). Natural B. napus had more up-regulated events and fewer down-regulated events. There was a global expression bias towards the B. oleracea-derived (C) subgenome in both resynthesized and natural B. napus, enhanced by widespread non-parental downregulation of the B. rapa-derived (A) homeolog. In the resynthesized B. napus specifically, this resulted a disproportionate C subgenome contribution to pathogen defense response, characterized by biases in both transcript expression levels and the proportion of induced genes. Our results elucidate the complex ways in which Sclerotinia infection affects expression and AS of homeologous genes in natural and resynthesized B. napus, and indicate that abiotic stress can influence the evolution of homeologous genes in polyploids.
Project description:Allopolyploidy, entailing whole genome duplication (WGD) of merged divergent genomes of different species, often instigates transcriptome shock, whereby both total gene expression level and homeolog expression partitioning can be disrupted and remodeled. Little is known about the extent to which the parental expression-conserved genes will be disrupted/remodeled by allopolyploidization, nor the evolutionary relevancy of shock-induced expression repatterning. Here, by microarray-based gene expression profiling and gene-specific cDNA-pyrosequencing, we assessed transgenerational transcriptome shock in a synthetic allotetraploid wheat (AT2) with karyotype and basic morphology mimicking those of natural tetraploid wheat, Triticum turgidum. We show that the transcriptome shock in AT2 is exceptionally strong that it disrupted intrinsically conserved parental gene expression, and resulted in extensive expression nonadditivity in the newly formed allotetraploid plants. At total expression level, a substantial proportion of shock-induced novel expression, especially over-transgressive expression, was rapidly stabilized already in early generations of AT2. Extensive remodeling of homeolog expression occurred in AT2, including those genes that showed additive total expression, and which generated subgenome expression dominance, a pattern that mirrors T. turgidum. Thus, the shock-induced new patterns of gene expression at both the total expression level and subgenome homeolog partitioning showed evidence of evolutionary persistence. Complex relationships between homeolog expression remodeling and nonadditive total expression were observed in a tissue-specific manner. We have 9 samples including two tissues, leaf and young-inflorescence, respectively. Each sample has three replicates. So we overall have 54 samples.
Project description:Changes in genome structure and gene expression have been documented in both resynthesized and natural allopolyploids that contain two or more divergent genomes. The underlying mechanisms for rapid and stochastic changes in gene expression are unknown. Arabidopsis suecica is a natural allotetraploid derived from the extant species A. thaliana and A. arenosa. Here we report that reduced DNA methylation in met1-RNAi A. suecica lines altered the expression of ~200 genes encoding transposons, centromeric and heterochromatic RNAs, and predicted proteins. Reduced DNA methylation occurred frequently in promoter regions of the upregulated genes but not of the repressed genes and led to increased mobility of En/Spm-like transposons in met1-RNAi A. suecica lines. Compared to A. arenosa centromeres, A. thaliana centromeres were hypermethylated, which correlates with higher levels of small RNA accumulation in A. thaliana centromeres than that in A. arenosa centromeres. Derepression of the genes examined was primarily derived from A. thaliana subgenome, and A. arenosa genes are less affected by methylation defects. Moreover, non-CG (CC) methylation in the promoter region of A. thaliana At2g23810 was maintained in resynthesized allotetraploids, and the methylation spread within the promoter region in natural A. suecica, leading to silencing of At2g23810, which was demethylated and reactivated in met1-RNAi A. suecica lines. We suggest that a subset of A. thaliana and A. arenosa genes are differentially methylated in natural allopolyploids, and some A. thaliana genes including centromeres are subjected to transcriptional repression and genome-specific RNA-mediated DNA methylation in Arabidopsis allopolyploids. Keywords: gene expression in reduced DNA methylation lines in Arabidopsis allotetraploids