Project description:Beef tenderness is a complex trait of economic importance for the beef industry. Understanding the genetic and epigenetic mechanisms underlying this trait may help improve the accuracy of breeding programs and deliver a better product quality to consumers. However, little is known about epigenetic effects in the muscle of Bos taurus and their implications in tenderness, and no studies have been conducted in Bos indicus. Therefore, we analyzed Reduced Representation Bisulfite Sequencing (RRBS) to search for differences in the methylation profile of Bos indicus skeletal muscle with extreme values for beef tenderness (tender = 6 animals, tough = 6 animals).
Project description:Background: The Malnad Gidda are unique dwarf Bos indicus cattle native to heavy rainfall Malnad and coastal areas of Karnataka in India. These cattle are highly adapted to harsh climatic conditions and are more resistant to Foot and Mouth disease as compared to other breeds of B.indicus. Since the first genome reference became available from B.taurus Hereford breed, only a few other breeds have been genotyped using high-throughput platforms. Also despite the known reports on high diversity within indicine breeds as compared to taurine breeds, only one draft genome of Nellore and horn transcriptome of Kankrej breed were sequenced at base level resolution. Because of the special characteristics Malnad Gidda possess, it becomes the choice of breed among many indicine cows to study at molecular level and genotyping. Results: Sequencing mRNA from the PBMCs isolated from blood of one selected Malnad Gidda bull resulted in generation of 55 million paired-end reads of 100bp length. Raw sequencing data is processed to trim the adaptor and low quality bases, and are aligned against the whole genome and transcript assemblies of Bos taurus UMD 3.1 and Bos indicus (Nellore breed) respectively. About 72% of the sequenced reads from our study could be mapped against the B.taurus genome where as only 41% of reads could be mapped against the Bos indicus transcript assembly. Transcript assembly from the alignment carried out against the annotated B.taurus UMD 3.1 genome resulted in identification of ~10,000 genes with significant expression (FPKM>1). In a similar analysis against the B.indicus Kankrej assembled transcripts we could identify only ~6,000 transcripts. From the variant analysis of the sequencing data we found ~10,000 SNPs in coding regions among which ~9,000 are novel and ~6,400 are amino acid changing. Conclusions: For the first time we have genotyped and explored the transcriptome of B.indicus Malnad Gidda breed. A comparative analysis of mapping the RNA-Seq data against the available reference genome and transcript sequences is demonstrated. An enhanced utility of transcript sequencing could be achieved by improving or completing the sequence assembly of any B.indicus breed to better characterize the indicine breeds for productivity features and selective breeding.
Project description:High fertility and early puberty in Bos indicus heifers are desirable and genetically correlated traits in beef production. The hypothalamus-pituitary-ovarian (HPO) axis synthesizes steroid hormones, which contribute to the shift from the pre-pubertal state into the post-pubertal state and influence subsequent fertility. Understanding variations in abundance of proteins that govern steroid synthesis and ovarian signaling pathways remains crucial to understanding puberty and fertility. We used whole ovaries of six pre-pubertal and six post-pubertal Brahman heifers to conduct differential abundance analyses of protein profiles between the two physiological states. Extracted proteins were digested into peptides followed by identification and quantification with massspectrometry (MS) by sequential window acquisition of all instances of theoretical fragment ion mass spectrometry (SWATH-MS). MS and statistical analysis identified 566 significantly differentially abundant (DA) proteins (adjusted p < 0.05), which were then analyzed for gene ontology and pathway enrichment. Our data indicated an up-regulation of steroidogenic proteins contributing to progesterone synthesis at luteal phase post-puberty. Proteins related to progesterone signaling, TGF-β, retinoic acid, extracellular matrix, cytoskeleton, and pleiotrophin signaling were DA in this study. The DA proteins probably relate to the formation and function of the corpus luteum, which is only present after ovulation, post-puberty. Some DA proteins might also be related to granulosa cells signaling, which regulates oocyte maturation or arrest in ovaries prior to ovulation. Ten DA proteins were coded by genes previously associated with reproductive traits according to the animal quantitative trait loci (QTL) database. In conclusion, the DA proteins and their pathways were related to ovarian activity in Bos indicus cattle. The genes that code for these proteins may explain some known QTLs and could be targeted in future genetic studies.
Project description:Evolutionary history leads to genome changes over time, especially for species that have experienced intense selective pressures over a short period. Here, we investigated the genomic evolution of Bos species by searching for potential selection signatures, focusing on Nelore, an economically relevant cattle breed in Brazil. We assessed the genomic processes determining the molecular evolution across Nelore and thirteen other related taxa by evaluating (i) amino acid sequence conservation, (ii) the dN/dS ratio, and (iii) gene families' turnover rate (λ). Low conserved regions potentially associated with fatty acid metabolism seem to reflect differences in meat fat content in taxa with different evolutionary histories. All Bos species presented genes under positive selection, especially B. indicus and Nelore, which include transport protein cobalamin, glycolipid metabolism, and hormone signaling. These findings could be explained by constant selective pressures to obtain higher immune resistance and efficient metabolism. The gene contraction rate across the Nelore + B. indicus branch was almost nine times higher than that in other lineages (λ = 0.01043 vs. 0.00121), indicating gene losses during the domestication process. Amino acid biosynthesis, reproductive and innate immune system-related pathways were associated with genes recognized within the most frequent rapidly evolving gene families and in genes under positive selection, supporting the substantial relevance of such traits from a domestication perspective. Our data provide new insights into how the genome may respond to intense artificial selection in distinct taxa, and reinforces the presence of selective pressures on traits potentially relevant for future animal breeding investments.
Project description:Puberty is a complex physiological event measured by various indicator traits in genetic improvement programs of beef cattle; thus, developing a more complete understanding of the genes and regulatory pathways and networks involved in puberty will provide knowledge to help improve genetic selection strategies. Herein, we characterized the transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to growth and metabolism needed for cattle to achieve puberty (i.e., longissimus dorsi muscle, fat, and liver). These tissues were collected from pre (PRE)- and post (POST)-pubertal Brangus (3/8 Brahman; Bos indicus x 5/8 Angus; Bos taurus) heifers derived from a population of cattle used to identify QTL associated with fertility traits. In order to exploit the power of complementary omics analyses, PRE and POST puberty co-expression gene networks were constructed by combining the results from RNA-Seq, GWAS, and bovine transcription factors. RNA-Seq of 8 tissues among PRE and POST Brangus heifers revealed 1515 differentiallyexpressed and 943 tissue-specific genes within the 17,832 genes confirmed by metrics of RNA-Seq analysis. Combining the results from RNA-Seq and GWAS indentified a total of 25 QTL associated to heifer fertility. The hypothalamus experienced the most notable up-regulation of genes via puberty. Complementary omics procedures revealed 2,450 co-expressed genes across the 8 tissues relative to puberty. The PRE network had 372,861 connections whereas the POST network had 328,357 connections. A sub-network from this process revealed key transcriptional regulators (i.e., PITX2, FOXA1, TSG1D1, DACH2, LHX4, PROP1 and SIX6). Results from multiples sources of omics data will facilitate the design of breeding strategies to improve fertility in Bos indicus-influenced composite cattle. Sixty-one samples from PRE and POST pubertal composite beef heifers were analyzed with RNA-Seq. The transcriptome of five reproductive tissues (i.e. hypothalamus, pituitary gland, ovary, uterus, and endometrium) as well as tissues known to be relevant to metabolism andbody morphometrics needed for cattle to achieve puberty (i.e.,) was characterized. These tissues were collected from pre (PRE)- and post (POST)-pubertal Brangus (3/8 Brahman x 5/8 Angus) heifers derived from a population of cattle used to identify QTL associated with fertility. Total RNA was purified using a Trizol protocol (Invitrogen, Carlsbad, CA). Sequencing libraries were made using TruSeq RNA Sample Preparation kit of Illumina (San Diego, CA).
Project description:To identify transcriptional markers for beef traits related to meat tenderness and moisture, we measured the transcriptome of the Longissimus dorsi skeletal muscle in 10 Korean native cattle (KNC). We analyzed the correlation between the beef transcriptome and measurements of four different beef traits, shear force (SF), water holding capacity (WHC), cooking loss (CL), and loin eye area (LEA). We obtained non-overlapping and unique panels of genes showing strong correlations (|r| > 0.8) with SF, WHC, CL, and LEA, respectively. Functional studies of these genes indicated that SF was mainly related to energy metabolism, and LEA to rRNA processing. Interestingly, our data suggested that WHC is influenced by protein metabolism. Overall, the skeletal muscle transcriptome pointed to the importance of energy and protein metabolism in determining meat quality after the aging process. The panels of transcripts for beef traits may be useful for predicting meat tenderness and moisture. Experiment Overall Design: Gene expression profiles were correlated with beef traits measured at the same cattle.