Project description:To gather more in-depth knowledge of the Mtl1p mechanosensor's role in Saccharomyces cerevisiae metabolism, we conducted a comparative metabolomic analysis of two Saccharomyces cerevisiae strains: the wild type and mtl1Δ, which carries a deletion of the mechanosensor Mtl1p. Both strains were grown under normal conditions at 27°C. The most significant metabolic changes between these strains were related to amino acid metabolism, purine metabolism, and carboxylic acid metabolism.
Project description:To gather more in-depth knowledge of the Mtl1p mechanosensor's role in Saccharomyces cerevisiae metabolism, we conducted a comparative metabolomic analysis of two Saccharomyces cerevisiae strains: the wild type and mtl1Δ, which carries a deletion of the mechanosensor Mtl1p. Both strains were grown under normal conditions at 27°C. The most significant metabolic changes between these strains were related to amino acid metabolism, purine metabolism, and carboxylic acid metabolism.
Project description:Here we studied genome-wide localization of Gcn5 under normal and KCl stress conditions in both yeast species. We found that in Saccharomyces cerevisiae, the enrichment of Gcn5 on genes changes from a relatively even distribution between coding region and intergenic region in the absence of stress, to a predominant localization in gene coding regions under stress conditions. This altered pattern changes are at global level indicates an important role of Gcn5 in modifying chromatin structure for stress adaptation in S. cerevisiae. The altered pattern changes are not observed in Saccharomyces pombe suggesting the different regulatory mechinery between two yeast speices. The related data series is GSE5218, where we have compared the gene regulation of Gcn5 at expression level in S. cerevisiae and S. pombe.
Project description:A six array study using total gDNA recovered from two separate cultures of each of three different strains of Saccharomyces cerevisiae (YB-210 or CRB, Y389 or MUSH, and Y2209 or LEP) and two separate cultures of Saccharomyces cerevisiae DBY8268. Each array measures the hybridization of probes tiled across the Saccharomyces cerevisiae genome.
Project description:Sequencing of mononucleosomal DNA during asynchronous mitosis in Schizosaccharomyces pombe, Schizosaccharomyces octosporus, Schizosaccharomyces japonicus and Saccharomyces cerevisiae Samples from mononucleosomal DNA from asynchronous mitosis of four species of budding (Saccharomyces cerevisiae W303-1a) and fission yeasts (S. pombe wild type 972h-, S. octosporus CBS1804, S. japonicus var. japonicus ade12- FY53) were sequenced (Illumina Genome Analyzer IIx and HiSeq 2500) using the single read and paired end protocol.
Project description:We profiled the strand-specific transcriptome of Saccharomyces cerevisiae lacking SWR1 and HTZ1 and compared it to the wild-type transcriptome
Project description:RNA sequencing of Saccharomyces cerevisiae wild type and alanyl-tRNA synthetase mutants grown at 30 degrees and challenged at 37 degrees
Project description:Comparison of the transcriptomes of Saccharomyces cerevisiae wild type FY23 and a PDE2 deletion mutant DJ28. Keywords = PDE2 Keywords = Ras/cAMP pathway Keywords: other
Project description:Intact nuclei from an asynchronous population of W303 Saccharomyces cerevisiae in log-phase growth were subjected to a 16-minute DNase I digestion (0.1 U/μL) at 37 °C. DNA was then recovered, and single-end Illumina sequencing libraries were prepared using the Crawford DNase-seq method (Song and Crawford, 2010).
Project description:Analysis of PCNA levels at stalled Saccharomyces cerevisiae replication forks upon Replication Factor C (RFC) Removal Analysis of nascent DNA incorporation at progressing Saccharomyces cerevisiae replication forks upon Rfc1 depletion