Project description:In this study, the Infinium BeadChip DNA methylome profiling technology was optimized for suboptimal input DNA conditions, including ultra-low input down to single cells. We acquired knowledge on the boundaries and limits of the Infinium DNA methylation BeadChips with suboptimal input DNA. These findings offer comprehensive solutions to expand the application of this technology to cases with limited DNA.
2024-02-27 | GSE239290 | GEO
Project description:Genome Sequencing of Nilaparvata muiri
Project description:Primary RNA Seq data for 11 diverse immunocyte populations from male and female mice of varying ages stimulated with different dose of IFN and sequenced using ImmGen's standard ultra-low input RNA-seq pipeline
Project description:Here, we report an enrichment-based ultra-low input cfDNA methylation profiling method using methyl-CpG binding proteins capture, termed cfMBD-seq. We optimized the conditions of cfMBD capture by adjusting the amount of MethylCap protein along with using methylated filler DNA. Our data showed that cfMBD-seq performs equally to the standard MBD-seq (>1000 ng input) even when using 1 ng DNA as the input. cfMBD-seq demonstrated equivalent sequencing data quality as well as similar methylation profile when compared to cfMeDIP-seq. We showed that cfMBD-seq outperforms cfMeDIP-seq in the enrichment of CpG islands. This new bisulfite-free ultra-low input methylation profiling technology has a great potential in non-invasive and cost-effective cancer detection and classification.
Project description:High-throughput RNA-sequencing has now become the gold standard method for whole-transcriptome gene expression analysis. It is widely used in a number of applications studying various transcriptomes of cells and tissues. It is also being increasingly considered for a number of clinical applications, including expression profiling for diagnostics or alternative transcripts detection. However, RNA sequencing can be challenging in some situations, for instance due to low input quantities or degraded RNA samples. Several protocols have been proposed to overcome some of these challenges, and many are available as commercial kits. Here we perform a comprehensive testing of three recent commercial technologies for RNA-seq library preparation (Truseq, Smarter and Smarter Ultra-Low) on human reference tissue preparations, for standard (1ug), low (100 and 10 ng) and ultra-low (< 1 ng) input quantities, and for mRNA and total RNA, stranded or unstranded. We analyze the results using read quality and alignments metrics, gene detection and differential gene expression metrics. Overall, we show that the Truseq kit performs well at 100 ng input quantity, while the Smarter kit shows degraded performances for 100 and 10 ng input quantities, and that the Smarter Ultra-Low kit performs quite well for input quantities < 1 ng. All the results are discussed in details, and we provide guidelines for the selection of a RNA-seq library preparation kits by biologists.