Project description:The integral role of p53 in tumor suppression has promted many laboratories to perform extensive analyses of signaling pathways downstream of the p53 family of sequence-specific DNA binding transcription factors (p53 and its homologs p63 and p73). Despite the ability of p73 to regulate many p53 family target genes, little is known about the specific pathways that modulate p73 during development, tumorigenesis and tumor therapy. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling. Experiment Overall Design: H1299 lung carcinoma cells were infected with p73 expressing or control adenovirus for 5 h and then harvested.
Project description:The integral role of p53 in tumor suppression has promted many laboratories to perform extensive analyses of signaling pathways downstream of the p53 family of sequence-specific DNA binding transcription factors (p53 and its homologs p63 and p73). Despite the ability of p73 to regulate many p53 family target genes, little is known about the specific pathways that modulate p73 during development, tumorigenesis and tumor therapy. In this study we present a gene signature-based approach for connecting signaling pathways to transcription factors, as exemplified by p73. We generated a p73 gene signature by integrating whole-genome chromatin immunoprecipitation and expression profiling. Experiment Overall Design: H1299 lung carcinoma cells were transduced with TAp73beta or GFP expressing adenoviruses. Microarray analysis (on the GFP and TAp73beta samples) and ChIPSeq analysis (on the TAp73beta sample) were performed to identify candidate p73 target genes.
Project description:Transcriptional profiling of H1299 non-small cell lung carcinoma cells transfected with either wt p53 or mut(175) p53 driven by the 5xHRE promoter (5 repeats of hypoxia-inducible factor response elements) and treated for 16 h with normoxia (21% O2) or hypoxia(<0.1% O2). 5xHRE promoter ensures that p53 expression is induced in hypoxic conditions only. Goal was to determine the transcriptional response of p53 in hypoxia and the 175 p53 mutant was used as a control as it is DNA-binding defective and transcription-incompetent mutant. Four-condition experiment: wt p53-transfected H1299 cells treated with normoxia, mut p53-transfected H1299 cells treated with normoxia, wt p53-transfected H1299 cells treated with hypoxia, mut p53-transfected H1299 cells treated with hypoxia. Biological replicates: 1 normoxic sample with wt p53, 1 normoxic sample with mut p53, 3 hypoxic samples with wt p53, 3 hypoxic samples with mut p53.
Project description:Expression data from H1299 human non-small cell lung carcinoma cell lines stably expressing CHES1 compared with H1299 infected with an empty vector