Project description:HES2 ESC were infected with a lentivirus construct containing either CD30 (TNFRSF8) extracellular deficient variant or GFP, using the ViraPower� Promoterless Lentiviral Gateway® Kits (Invitrogen). HES2 cells were recovered and grown for 19 passages. HES2 were commonly grown on Mouse Embryonic Feeder cells in the presence of KSOR media. Before collection of RNA, ES cells were FACs sorted with antibodies to GCMT-2 and CD9 to separate ES cells from differentiated cells and mouse feeders. The experiment was repeated in triplicate. The final aim was to deduce the effect of overexpressing the variant form of CD30 on gene expression in HES2 cells. Three consecutive passages of HES2 cells over-expressing either CD30V or GFP were grown and subject to FACs sorting, collection and microarray. A total of 6 samples, (3 replicates of these 2 populations) were used in the experiment.
Project description:HES2 ESC were infected with a lentivirus construct containing either CD30 (TNFRSF8) extracellular deficient variant or GFP, using the ViraPower™ Promoterless Lentiviral Gateway® Kits (Invitrogen). HES2 cells were recovered and grown for 19 passages. HES2 were commonly grown on Mouse Embryonic Feeder cells in the presence of KSOR media. Before collection of RNA, ES cells were FACs sorted with antibodies to GCMT-2 and CD9 to separate ES cells from differentiated cells and mouse feeders. The experiment was repeated in triplicate. The final aim was to deduce the effect of overexpressing the variant form of CD30 on gene expression in HES2 cells.
Project description:Ascorbate activates CD30 expression and causes widespread specific demethylation of the epigenome of serum free cultured hESC. The genetic and epigenetic integrity of human Embryonic Stem cells (hESCs) is critical to their future applications in research and medicine. hESC cultured in serum free media can accumulate point mutations, aneuploidy and progressive epigenetic changes over prolonged culture in vitro. We have identified ascorbate as the only molecule in the very widely used Knock-out serum replacement medium that is sufficient to induce expression of CD30, a biomarker for aneuploidy in hESCs. In fact, we show that hESC cultured in the presence of ascorbate for 20 passages not only display demethylation of the CD30 locus, but exhibit widespread and remarkably specific and consistent demethylation of 1,847 genes in both HES2 and HES3 cells. The specific ascorbate induced demethylation changes in the hESC epigenome, of which 86% are shared between the two lines, identify a subset of genes in hESC, including CD30, that are sensitive to serum free culture medium induced epigenetic changes. Experiment. HES2 cells were maintained on 20% Fetal calf serum on mouse embryonic fibroblast feeder layers with mechanical dissection. Using HES2 after 99 mechanical passages (P99), hESC were grown for 17-20 (+17 - +20) passages in the presence of 20% Knock-Out Serum Replacement (Invitrogen) either with (+ASC) or without (-ASC) Ascorbate with enzymatic culturing. RNA (FACs sorted for the presence of the pluripotent stem marker TG30) from three passages (17, 19 and 20) (replicates) for both +ASC and âASC samples were arrayed.
Project description:Ascorbate activates CD30 expression and causes widespread specific demethylation of the epigenome of serum free cultured hESC. The genetic and epigenetic integrity of human Embryonic Stem cells (hESCs) is critical to their future applications in research and medicine. hESC cultured in serum free media can accumulate point mutations, aneuploidy and progressive epigenetic changes over prolonged culture in vitro. We have identified ascorbate as the only molecule in the very widely used Knock-out serum replacement medium that is sufficient to induce expression of CD30, a biomarker for aneuploidy in hESCs. In fact, we show that hESC cultured in the presence of ascorbate for 20 passages not only display demethylation of the CD30 locus, but exhibit widespread and remarkably specific and consistent demethylation of 1,847 genes in both HES2 and HES3 cells. The specific ascorbate induced demethylation changes in the hESC epigenome, of which 86% are shared between the two lines, identify a subset of genes in hESC, including CD30, that are sensitive to serum free culture medium induced epigenetic changes. Experiment. HES2 cells were maintained on 20% Fetal calf serum on mouse embryonic fibroblast feeder layers with mechanical dissection. Using HES2 after 99 mechanical passages (P99), hESC were grown for 17-20 (+17 - +20) passages in the presence of 20% Knock-Out Serum Replacement (Invitrogen) either with (+ASC) or without (-ASC) Ascorbate with enzymatic culturing.
Project description:Kynureninase is a member of a large family of catalytically diverse but structurally homologous pyridoxal 5'-phosphate (PLP) dependent enzymes known as the aspartate aminotransferase superfamily or alpha-family. The Homo sapiens and other eukaryotic constitutive kynureninases preferentially catalyze the hydrolytic cleavage of 3-hydroxy-l-kynurenine to produce 3-hydroxyanthranilate and l-alanine, while l-kynurenine is the substrate of many prokaryotic inducible kynureninases. The human enzyme was cloned with an N-terminal hexahistidine tag, expressed, and purified from a bacterial expression system using Ni metal ion affinity chromatography. Kinetic characterization of the recombinant enzyme reveals classic Michaelis-Menten behavior, with a Km of 28.3 +/- 1.9 microM and a specific activity of 1.75 micromol min-1 mg-1 for 3-hydroxy-dl-kynurenine. Crystals of recombinant kynureninase that diffracted to 2.0 A were obtained, and the atomic structure of the PLP-bound holoenzyme was determined by molecular replacement using the Pseudomonas fluorescens kynureninase structure (PDB entry 1qz9) as the phasing model. A structural superposition with the P. fluorescens kynureninase revealed that these two structures resemble the "open" and "closed" conformations of aspartate aminotransferase. The comparison illustrates the dynamic nature of these proteins' small domains and reveals a role for Arg-434 similar to its role in other AAT alpha-family members. Docking of 3-hydroxy-l-kynurenine into the human kynureninase active site suggests that Asn-333 and His-102 are involved in substrate binding and molecular discrimination between inducible and constitutive kynureninase substrates.
Project description:As the evolution of miRNA genes has been found to be one of the important factors in formation of the modern type of man, we performed a comparative analysis of the evolution of miRNA genes in two archaic hominines, Homo sapiens neanderthalensis and Homo sapiens denisova, and elucidated the expression of their target mRNAs in bain.A comparative analysis of the genomes of primates, including species in the genus Homo, identified a group of miRNA genes having fixed substitutions with important implications for the evolution of Homo sapiens neanderthalensis and Homo sapiens denisova. The mRNAs targeted by miRNAs with mutations specific for Homo sapiens denisova exhibited enhanced expression during postnatal brain development in modern humans. By contrast, the expression of mRNAs targeted by miRNAs bearing variations specific for Homo sapiens neanderthalensis was shown to be enhanced in prenatal brain development.Our results highlight the importance of changes in miRNA gene sequences in the course of Homo sapiens denisova and Homo sapiens neanderthalensis evolution. The genetic alterations of miRNAs regulating the spatiotemporal expression of multiple genes in the prenatal and postnatal brain may contribute to the progressive evolution of brain function, which is consistent with the observations of fine technical and typological properties of tools and decorative items reported from archaeological Denisovan sites. The data also suggest that differential spatial-temporal regulation of gene products promoted by the subspecies-specific mutations in the miRNA genes might have occurred in the brains of Homo sapiens denisova and Homo sapiens neanderthalensis, potentially contributing to the cultural differences between these two archaic hominines.
Project description:PurposeWe investigated the evidence of recent positive selection in the human phototransduction system at single nucleotide polymorphism (SNP) and gene level.MethodsSNP genotyping data from the International HapMap Project for European, Eastern Asian, and African populations was used to discover differences in haplotype length and allele frequency between these populations. Numeric selection metrics were computed for each SNP and aggregated into gene-level metrics to measure evidence of recent positive selection. The level of recent positive selection in phototransduction genes was evaluated and compared to a set of genes shown previously to be under recent selection, and a set of highly conserved genes as positive and negative controls, respectively.ResultsSix of 20 phototransduction genes evaluated had gene-level selection metrics above the 90th percentile: RGS9, GNB1, RHO, PDE6G, GNAT1, and SLC24A1. The selection signal across these genes was found to be of similar magnitude to the positive control genes and much greater than the negative control genes.ConclusionsThere is evidence for selective pressure in the genes involved in retinal phototransduction, and traces of this selective pressure can be demonstrated using SNP-level and gene-level metrics of allelic variation. We hypothesize that the selective pressure on these genes was related to their role in low light vision and retinal adaptation to ambient light changes. Uncovering the underlying genetics of evolutionary adaptations in phototransduction not only allows greater understanding of vision and visual diseases, but also the development of patient-specific diagnostic and intervention strategies.
Project description:Cortical thickness has been investigated since the beginning of the 20th century, but we do not know how similar the cortical thickness profiles among humans are. In this study, the local similarity of cortical thickness profiles was investigated using sliding window methods. Here, we show that approximately 5% of the cortical thickness profiles are similarly expressed among humans while 45% of the cortical thickness profiles show a high level of heterogeneity. Therefore, heterogeneity is the rule, not the exception. Cortical thickness profiles of somatosensory homunculi and the anterior insula are consistent among humans, while the cortical thickness profiles of the motor homunculus are more variable. Cortical thickness profiles of homunculi that code for muscle position and skin stimulation are highly similar among humans despite large differences in sex, education, and age. This finding suggests that the structure of these cortices remains well preserved over a lifetime. Our observations possibly relativize opinions on cortical plasticity.