Project description:38 horses from 16 diverse breeds and Przewalski's Horse were used to generate a composite CNV map of equine genome. This map was used to detect novel copy number variation in six horses affected with disorder of sexual development (DSD).
Project description:Opioids such as morphine have many beneficial properties as analgesics, however, opioids may induce multiple adverse gastrointestinal symptoms. We have recently demonstrated that morphine treatment results in significant disruption in gut barrier function leading to increased translocation of gut commensal bacteria. However, it is unclear how opioids modulate the gut homeostasis. By using a mouse model of morphine treatment, we studied effects of morphine treatment on gut microbiome. We characterized phylogenetic profiles of gut microbes, and found a significant shift in the gut microbiome and increase of pathogenic bacteria following morphine treatment when compared to placebo. In the present study, wild type mice (C57BL/6J) were implanted with placebo, morphine pellets subcutaneously. Fecal matter were taken for bacterial 16s rDNA sequencing analysis at day 3 post treatment. A scatter plot based on an unweighted UniFrac distance matrics obtained from the sequences at OTU level with 97% similarity showed a distinct clustering of the community composition between the morphine and placebo treated groups. By using the chao1 index to evaluate alpha diversity (that is diversity within a group) and using unweighted UniFrac distance to evaluate beta diversity (that is diversity between groups, comparing microbial community based on compositional structures), we found that morphine treatment results in a significant decrease in alpha diversity and shift in fecal microbiome at day 3 post treatment compared to placebo treatment. Taxonomical analysis showed that morphine treatment results in a significant increase of potential pathogenic bacteria. Our study shed light on effects of morphine on the gut microbiome, and its role in the gut homeostasis.
Project description:We recruited 24 Mongolian volunteers,6 of which were T2D cases(sample T1-T6), 6 were prediabetes cases(sample P1-P6), and 12 were health cases(sample C1-C12). The metagenomic analysis of gut microbiota from the volunteers’ fecal samples was performed. We compared the microbial differences in the three groups, and analyzed the differences of the stool microbial function.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.
Project description:Morphine causes microbial dysbiosis. In this study we focused on restoration of native microbiota in morphine treated mice and looked at the extent of restoration and immunological consequences of this restoration. Fecal transplant has been successfully used clinically, especially for treating C. difficile infection2528. With our expanding knowledge of the central role of microbiome in maintenance of host immune homeostasis17, fecal transplant is gaining importance as a therapy for indications resulting from microbial dysbiosis. There is a major difference between fecal transplant being used for the treatment of C. difficile infection and the conditions described in our studies. The former strategy is based on the argument that microbial dysbiosis caused by disproportionate overgrowth of a pathobiont can be out-competed by re-introducing the missing flora by way of a normal microbiome transplant. This strategy is independent of host factors and systemic effects on the microbial composition. Here, we show that microbial dysbiosis caused due to morphine can be reversed by transplantation of microbiota from the placebo-treated animals.
Project description:Microbial colonization of the human gastrointestinal tract plays an important role in establishing health and homeostasis. However, the time-dependent and related functional signatures of microbial and human proteins during early colonization of the gut have yet to be determined. Thus, we employed shotgun proteomics via nano-2D-LC-MS/MS to simultaneously monitor microbial and human proteins in fecal samples from a healthy preterm infant during early development. ). All MS/MS spectra were searched against a predicted protein database containing 25 microbial species along with the Human RefSeq2011 genome using the SEQUEST algorithm (Eng et al, 1994), and filtered with DTASelect version 1.9 (Tabb et al, 2002) at the peptide level with standard filters [SEQUEST Xcorrs of at least 1.8 (+1), 2.5 (+2) 3.5 (+3)] organizing identified peptides to their corresponding protein sequences. This study provides the first elucidation of coordinated human and microbial proteins in the infant gut during early development.
Project description:This study in rats was designed to investigate whether whole rhye (WR) can influence the metabolism of n-3 and n-6 long-chain fatty acids (LCFA) and gut microbiota composition. For 12 weeks, rats were fed a diet containing either 50% WR or 50% refined rye (RR). Total bacterial DNA was extracted from fecal and cecal samples (n=5 per group). 16S PCR amplification was performed to assess the microbial diversity at the family level using the HuGChip. Amplified DNA was purified and labelled with either Cy3 or Cy5 dye and hybridized on the microarray. A 15 chip study was realized, each corresponding to hybridization with 250ng of labelled 16S rRNA gene amplicons from either mice fecal and cecal samples. Each probe (4441) was synthetized in three replicates.
Project description:Complex oligosaccharides found in human milk play a vital role in gut microbiome development for the human infant. Bovine milk oligosaccharides (BMO) have similar structures with those derived from human milk, but have not been well studied for their effects on the healthy adult human gut microbiome. Healthy human subjects consumed BMO over two-week periods at two different doses and provided fecal samples. Metatranscriptomics of fecal samples was conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbiome activity across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial activity. No significant change was observed in the gene expression of host cells in stool. Levels of BMO excreted in feces after supplementation were not significantly different from placebo and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO is fully digested in the human gastrointestinal tract prior to stool collection. Participants’ gut microbiomes remained stable but varied between individuals. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient.
2020-02-18 | GSE108809 | GEO
Project description:Microbiome of reintroduced wild horses and resident Asiatic wild asses
| PRJNA814825 | ENA
Project description:Fecal microbiome of wild przewalski's horse