Project description:<p>Marine sponges can host abundant and diverse microbiomes, which can largely influence the metabolism and other phenotypic traits of the host. However, information on the potential relationships between sponge microbiomes and metabolic signatures, other than secondary metabolites explored for biotechnological purposes, needs further investigation. Applying an integrated approach, we investigated the microbiomes associated with 4 ubiquitous Mediterranean sponge species (i.e., Petrosia ficiformis, Chondrosia reniformis, Crambe crambe and Chondrilla nucula), correlated with their metabolomic patterns (in terms of lipidomics) and microbial predicted functions. Microscopy observations of sponge tissues revealed differences in microbial abundances, which, however, were only partially linked to their diversity assessed through metabarcoding. The microbiomes of the 4 sponges showed a species-specific composition and a different core size, which was independent from the microbial diversity of the surrounding seawater. Predicted functions of the associated microbiomes allowed identifying 2 functional host clusters: one more related to heterotrophic pathways and the other more linked to phototrophic activities. Differences in the microbiomes were also associated with different metabolic profiles, mostly due to specific compounds characterizing the host and its microbiome. Overall, this study provides new insights on the functionality of sponges and their prokaryotic symbioses’, and in particular, it discloses a descriptive sketch of the diverse compartments forming the sponge holobiont.</p>