Project description:Our data demonstrate the suitability of target capture technology for purifying very low quantities of Leptospira DNA from biological samples where the human genome is in vast excess. This enables deep sequencing of partial Leptospira genomes directly from clinical samples using next generation technologies and genotyping.
Project description:Pathogenic Leptospira spp. are the causative agents of the zoonotic disease leptospirosis. During infection, Leptospira are confronted with deadly reactive oxygen species (ROS). Withstanding ROS produced by the host innate immunity is an important strategy evolved by pathogenic Leptospira for persisting in and colonizing hosts. The peroxide stress regulator, PerRA, represses genes involved in ROS defenses in L. interrogans. We have identified an ORF encoding a putative second PerR in pathogenic Leptospira that we named PerRB. We have determined the transcriptomic profil of a single perRB and a double perRAperRB mutants. The concomitant inactivation of perRA and perRB has a pleiotropic effect on the transcriptomic profil of L. interrogans. The lack of both PerRA and PerRB regulators led to the differential expression of several virulence-associated genes and a loss of virulence. Our findings provide new insights into a new regulatory network that controls virulence and host colonization.