Project description:Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are strongly influenced by inherited genetic variation, but environmental and epigenetic factors also play key roles in the course of these diseases. A hexanucleotide repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of ALS and FTD. To determine the cellular alterations associated with the C9 repeat expansion, we performed single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem samples of motor and frontal cortices from C9-ALS and C9-FTD donors. We found pervasive alterations of gene expression across multiple cortical cell types in C9-ALS, with the largest number of affected genes in astrocytes and excitatory neurons. Astrocytes increased expression of markers of activation and pathways associated with structural remodeling. Excitatory neurons in upper and deep layers increased expression of genes related to proteostasis, metabolism, and protein expression, and decreased expression of genes related to neuronal function. Epigenetic analyses revealed concordant changes in chromatin accessibility, histone modifications, and gene expression in specific cell types. C9-FTD patients had a distinct pattern of changes, including loss of neurons in frontal cortex and altered expression of thousands of genes in astrocytes and oligodendrocyte-lineage cells. Overall, these findings demonstrate a context-dependent molecular disruption in C9-ALS and C9-FTD, resulting in distinct effects across cell types, brain regions, and disease phenotypes.
Project description:Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are strongly influenced by inherited genetic variation, but environmental and epigenetic factors also play key roles in the course of these diseases. A hexanucleotide repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of ALS and FTD. To determine the cellular alterations associated with the C9 repeat expansion, we performed single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem samples of motor and frontal cortices from C9-ALS and C9-FTD donors. We found pervasive alterations of gene expression across multiple cortical cell types in C9-ALS, with the largest number of affected genes in astrocytes and excitatory neurons. Astrocytes increased expression of markers of activation and pathways associated with structural remodeling. Excitatory neurons in upper and deep layers increased expression of genes related to proteostasis, metabolism, and protein expression, and decreased expression of genes related to neuronal function. Epigenetic analyses revealed concordant changes in chromatin accessibility, histone modifications, and gene expression in specific cell types. C9-FTD patients had a distinct pattern of changes, including loss of neurons in frontal cortex and altered expression of thousands of genes in astrocytes and oligodendrocyte-lineage cells. Overall, these findings demonstrate a context-dependent molecular disruption in C9-ALS and C9-FTD, resulting in distinct effects across cell types, brain regions, and disease phenotypes.
2023-07-17 | GSE219277 | GEO
Project description:Sequencing of Stenotrophomonas maltophilia phage
Project description:Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are strongly influenced by inherited genetic variation, but environmental and epigenetic factors also play key roles in the course of these diseases. A hexanucleotide repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of ALS and FTD. To determine the cellular alterations associated with the C9 repeat expansion, we performed single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem samples of motor and frontal cortices from C9-ALS and C9-FTD donors. We found pervasive alterations of gene expression across multiple cortical cell types in C9-ALS, with the largest number of affected genes in astrocytes and excitatory neurons. Astrocytes increased expression of markers of activation and pathways associated with structural remodeling. Excitatory neurons in upper and deep layers increased expression of genes related to proteostasis, metabolism, and protein expression, and decreased expression of genes related to neuronal function. Epigenetic analyses revealed concordant changes in chromatin accessibility, histone modifications, and gene expression in specific cell types. C9-FTD patients had a distinct pattern of changes, including loss of neurons in frontal cortex and altered expression of thousands of genes in astrocytes and oligodendrocyte-lineage cells. Overall, these findings demonstrate a context-dependent molecular disruption in C9-ALS and C9-FTD, resulting in distinct effects across cell types, brain regions, and disease phenotypes.
Project description:Neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), are strongly influenced by inherited genetic variation, but environmental and epigenetic factors also play key roles in the course of these diseases. A hexanucleotide repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of ALS and FTD. To determine the cellular alterations associated with the C9 repeat expansion, we performed single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem samples of motor and frontal cortices from C9-ALS and C9-FTD donors. We found pervasive alterations of gene expression across multiple cortical cell types in C9-ALS, with the largest number of affected genes in astrocytes and excitatory neurons. Astrocytes increased expression of markers of activation and pathways associated with structural remodeling. Excitatory neurons in upper and deep layers increased expression of genes related to proteostasis, metabolism, and protein expression, and decreased expression of genes related to neuronal function. Epigenetic analyses revealed concordant changes in chromatin accessibility, histone modifications, and gene expression in specific cell types. C9-FTD patients had a distinct pattern of changes, including loss of neurons in frontal cortex and altered expression of thousands of genes in astrocytes and oligodendrocyte-lineage cells. Overall, these findings demonstrate a context-dependent molecular disruption in C9-ALS and C9-FTD, resulting in distinct effects across cell types, brain regions, and disease phenotypes.
Project description:We established two HESC lines with a C9 mutation (SZ-ALS1, SZ-ALS3) from embryos, which were obtained through preimplantation genetic diagnosis (PGD) and donated for cell line derivation by a family in which the mother was an expansion carrier (originally diagnosed as a carrier of an expansion with >40 repeats in blood by a repeat primed PCR). In addition, we generated halo-identical and unrelated C9/ALS iPSCs from a skin biopsies of the C9 carrier mother (patient H, 30 years-old), and from an unrelated C9/ALS patient, 2 years following disease-onset (patient M, 65 years-old).
Project description:Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) represent two ends of a disease spectrum with shared clinical, genetic and pathological features. These include near ubiquitous pathological inclusions of the RNA binding protein (RBP) TDP-43, and often the presence of a GGGGCC expansion in the C9ORF72 (C9) gene. Here we show unexpectedly that the signature of hnRNP H sequestration and altered splicing of target transcripts we identified in C9ALS patients (Conlon et al. 2016) also occurs in fully half of 50 post-mortem sporadic, non-C9 ALS/FTD post-mortem brains. Furthermore, and equally surprisingly, these “like-C9” brains also contained correspondingly high amounts of insoluble TDP-43, as well as several other disease-related RBPs, and this correlates with widespread global splicing defects. Finally, we show that the like-C9 sporadic patients, like actual C9ALS patients, were much more likely to have developed FTD. We propose that these unexpected links between C9 and sporadic ALS/FTD define a common mechanism in this disease spectrum.