Project description:Pectobacterium atrosepticum (Pba) is a gram-negative bacterium which causes blackleg and tuber soft rot on potato. To investigate the molecular processes and responses involved in Pba-host (potato) and Pba-non-host (radish) interactions, under laboratory conditions, we used total RNA-sequencing to measure the gene expression patterns from all three species. Samples from infected and non-infected plant roots were collected after fourteen days of inoculation with Pba SCRI_1039 and subjected to total RNA-sequencing on an Illumina sequencing platform.
Project description:Importance: Pectobacterium species cause soft rot in potato and other host plants primarily by secreting a battery of plant cell wall degrading enzymes. In addition, several different secretion systems are mobilized during infection. Previous studies of gene expression and regulation thereof primarily focused on the onset of infection. This work investigated transcriptome changes in Pectobacterium during the infection of potato tubers up to 72 hours post inoculation to elucidate biological processes during a longer infection period. Methods: The transcriptomes of aggressive strains of the two species P. carotovorum subsp. carotovorum and P. polaris were investigated during infection of potato minitubers (cv. 'Asterix') at 24, 48 and 72 hours after inoculation by RNA sequencing. The transcriptomes were compared to that of bacteria grown on minimal M9 medium, and transcriptomes from later infection time points (48 and 72 hours after inoculation) were compared to early infection (24 hours after inoculation). Results: Plant cell wall degrading enzymes and secretion system associated genes were largely upregulated during infection compared to in vitro growth, but downregulated in the later phases of infection compared to the early infection phase. The downregulation was not sufficiently explained by the expression of known virulence regulators such as the RsmA/B or the ExpA/S systems.
Project description:The soft rot pathogen Janthinobacterium agaricidamnosum causes devastating damage to button mushrooms (Agaricus bisporus), one of the most cultivated and commercially relevant mushrooms. We previously discovered that this pathogen releases the membrane-disrupting lipopeptide jagaricin. This bacterial toxin, however, could not solely explain the rapid decay of mushroom fruiting bodies, indicating that J. agaricidamnosum implements a more sophisticated infection strategy. In this study, we show that secretion systems play a crucial role in soft rot disease. By mining the genome of J. agaricidamnosum, we identified gene clusters encoding a type I (T1SS), a type II (T2SS), a type III (T3SS), and two type VI secretion systems (T6SS). Through a combination of knockout studies and bioassays, we found that the T2SS and T3SS of J. agaricidamnosum are required for soft rot disease. Furthermore, comparative secretome analysis and activity-guided fractionation identified a number of secreted lytic enzymes responsible for mushroom damage. Our findings regarding the contribution of secretion systems to the disease process expand the current knowledge of bacterial soft rot pathogens and represent a significant stride towards identifying targets for their disarmament with secretion system inhibitors.