Project description:Pectobacterium atrosepticum (Pba) is a gram-negative bacterium which causes blackleg and tuber soft rot on potato. To investigate the molecular processes and responses involved in Pba-host (potato) and Pba-non-host (radish) interactions, under laboratory conditions, we used total RNA-sequencing to measure the gene expression patterns from all three species. Samples from infected and non-infected plant roots were collected after fourteen days of inoculation with Pba SCRI_1039 and subjected to total RNA-sequencing on an Illumina sequencing platform.
Project description:The DsbA oxidoreductase is a crucial factor responsible for introduction of disulfide bonds to the extracytoplasmic proteins in bacteria. A lack of the proper disulfides frequently leads to instability and/or loss of protein function. In pathogens, numerous envelope and extracellular proteins play important roles in pathogenesis; therefore, their improper disulfide bonding may lead to avirulent phenotypes. The importance of the DsbA function in phytopathogens has not been extensively studied yet. Dickeya solani is a bacterium from the Soft Rot Pectobacteriaceae group which is responsible for very high economic losses mainly on potato. In recent years, D. solani became the most abundant potato pathogen among Dickeya species in Europe. In this work, using the D. solani dsbA mutant, we demonstrated that a lack of the DsbA function caused loss of virulence. Mutant bacteria were deficient in most secreted virulence determinants and were not able to develop disease symptoms in the natural host, the potato plant. The SWATH-MS-based proteomic analysis revealed that the dbsA mutation led to multifaceted effects in the D. solani cells. First of all, the levels of the majority of plant cell wall degrading enzymes and proteins related to motility and chemotaxis were severely reduced. Furthermore, the protein profiles suggested induction of the envelope and cytoplasm stress responses in the mutant cells. Finally, the outer membrane barrier seemed to be disturbed by the mutation. Our results clearly demonstrate that the function played by the DsbA oxidoreductase is indispensable for D. solani virulence and a lack of DsbA significantly disturbs cellular physiology. A thorough analysis of proteomic research suggests that a lack of virulence may result from both, abnormalities of the disulfide deprived virulence determinants and the envelope stress-dependent repression of the virulence genes in the dsbA mutant.
Project description:We report the application of RNA- sequencing technology for high-throughput profiling of histone modifications in mammalian cellsor identification of expressed genes upon infection by Spongospora subterranea. Using RNA-sequencing (RNA-seq), 2058 differentially expressed genes (DEGs) were identified from two potato cultivars (tolerant and susceptible) in response to Sss infection. Analysis of the expression patterns of ten selected defense-response genes was carried out at two different stages of tuber growth using RT-qPCR to validate the RNA-seq data. Several defense related genes showed contrasting expression patterns between the tolerant and susceptible cultivars, including marker genes involved in the salicylic acid hormonal response pathway (StMRNA, StUDP and StWRKY6). Induction of six defense related genes (StWRKY6, StTOSB, StSN2, StLOX, StUDP and StSN1) persisted until harvest of the tubers, while three other genes (StNBS, StMRNA and StPRF) were highly up-regulated during the initial stages of disease development. The results of this study suggested that the tolerant potato cultivar employs quantitative resistance and salicylic acid pathway hormonal responses against tuber infection by Sss. The identified genes have the potential to be used in the development of molecular markers for selection of powdery scab resistant potato lines in marker assisted breeding programs.
Project description:For many potato cultivars, tuber yield is optimal at average day time temperatures in the range of 14-22 ⁰C. Further rises in ambient temperature can reduce or completely inhibit potato tuber production, with damaging consequences for both producer and consumer. In our previous work we observed that the steady-state expression level of the core circadian clock gene, TIMING OF CAB EXPRESSION 1 (TOC1), in potato tubers increased at moderately elevated temperature, whereas expression of the tuberisation signal gene StSP6A decreased along with tuber yield. In this study we investigated the potential roles of StTOC1 in linking environmental signalling and potato tuberisation. We show that transgenic lines with decreased expression of StTOC1 exhibit enhanced StSP6A transcript levels in tuberising stolons, and show changes in gene expression consistent with elevated tuber sink strength.