Project description:In this study we have tried to utilize the unique aspects of the T. ruralis response to desiccation and rehydration to design a strategy to identify rehydrins that are of low abundance and perhaps completely novel to the desiccated or rehydration transcriptomes. We have constructed two Subtractive Suppression Hybridization (SSH) libraries (Diatchenko et al., 1996) that are designed to enrich for differentially expressed low-abundance transcripts contained within gametophytic cells either in the slow-dried state (mRNP sequestrated rehydrin transcripts) or cells that have been rapidly dried, rehydrated and sampled at 2h of hydration (rehydrin and recovery transcripts) when the translational change in gene expression is at its peak (Oliver 1991). To achieve this aim we constructed SSH libraries using PolyA RNA isolated from the polysomal (mRNP) fractions from the slow-dried and 2h rehydrated rapid dried gametophytes selected against PolyA RNA from hydrated control gametophytes as the source for driver cDNA. Collections of cDNA clones from each library were sequenced and used to generate a small T. ruralis SSH cDNA microarray for expression profiling of both total RNA extracts for transcript accumulation assessments and polysomal RNA extracts for transcript sequestration and recruitment assessments.
Project description:Transcription profiling of blood from smokers, non-smokers and former smokers to identify gene expression signature for cigarette smoke exposure response
Project description:In this study we have tried to utilize the unique aspects of the T. ruralis response to desiccation and rehydration to design a strategy to identify rehydrins that are of low abundance and perhaps completely novel to the desiccated or rehydration transcriptomes. We have constructed two Subtractive Suppression Hybridization (SSH) libraries (Diatchenko et al., 1996) that are designed to enrich for differentially expressed low-abundance transcripts contained within gametophytic cells either in the slow-dried state (mRNP sequestrated rehydrin transcripts) or cells that have been rapidly dried, rehydrated and sampled at 2h of hydration (rehydrin and recovery transcripts) when the translational change in gene expression is at its peak (Oliver 1991). To achieve this aim we constructed SSH libraries using PolyA RNA isolated from the polysomal (mRNP) fractions from the slow-dried and 2h rehydrated rapid dried gametophytes selected against PolyA RNA from hydrated control gametophytes as the source for driver cDNA. Collections of cDNA clones from each library were sequenced and used to generate a small T. ruralis SSH cDNA microarray for expression profiling of both total RNA extracts for transcript accumulation assessments and polysomal RNA extracts for transcript sequestration and recruitment assessments. To assess the expression characteristics of the transcripts represented by the SSH contigs we established a cDNA microarray containing the inserts (PCR derived fragment) from each of the 768 individual SSH ESTs, with the exception of thirteen that failed to generate a PCR fragment. Twelve of the missing thirteen SSH EST cDNAs were replaced with PCR fragments from previously isolated T. ruralis cDNAs four of which, representing the ribosomal proteins S14, S16, L23 and L15 (Wood et al., 2000, Zeng and Wood 2000), were previously reported to be constitutively expressed and were added to serve as normalization genes. The remaining eight clones, Tr155, Tr217, Tr403, Tr416, Tr421 (described by Scott and Oliver, 1994), and TrCDPK (U82087) were added as either positive â??up-regulatedâ?? (Tr155, Tr403, Tr421), negative â??down-regulated (Tr217, Tr416), or neutral (TrCDPK) controls based on previous northern analyses. The cDNAs were printed from two 384 well plates in 12 blocks (two columns of 6) of 24 x 8 spots such that each SSH EST and controls were represented in triplicate. Each of the triplicate cDNAs was separated within the blocks to eliminate possible spatial hybridization bias. All hybridizations were duplicated as dye swaps with two separate RNA preparations, from large populations of individual gametophytes (isolated from a minimum of three separate clumps), serving as the source for the sscDNA Cy3 and Cy5 labeled probes. The RNA preparations for the Total polyA RNA were by necessity separate samples from those used to isolate Polysomal poly A RNA.
Project description:Genomic profiling of collaborative cross founder mouse strains infected with respiratory viruses to discover novel transcripts and infection-related strain-specific gene and isoform expression
Project description:Transcription profiling of mouse in vivo matured MII oocytes and fully in vivo grown germinal vesicle oocytes to identify gene transcripts linked to epigenetic reprogramming
Project description:The proteome of the gametophytes of Diplazium maximum, a temperate Himalayan Polypoidale fern was studied in response to micro-environmental changes. The study was expected to reveal the key proteins associated with a gametophyte’s response to sucrose mediated changes in osmotic potential. A major aim of the study was to identify proteins that would express differentially under micro-environmental stress and also to gain an understanding of the adaptive responses/competence of D. maximum gametophytes. The genes/proteins identified in the study have potential utility in various crop improvement programs.
Project description:Transcription profiling of pancreatic cancer cell lines BxPC-3 and AsPC-1 stimulated with PMA to identify an invasive gene expression signature
Project description:Identification of alternatively spliced transcripts in brain metastatic derivatives of MDA-MB-231 breast cancer cells in response to RBM47 expression
Project description:Transcription profiling of mouse gene expression after transverse aortic constriction in mice: comparison of TAC vs. sham group at 2, 10 and 21 days to identify the differential expression of genes