Project description:Acinetobacter baumannii causes high mortality in ventilator-associated pneumonia patients and antibiotic treatment is compromised in multi-drug resistant strains resistant to beta-lactams, carbapenems, cephalosporins, polymyxins and tetracyclines. Among COVID-19 patients receiving ventilator support, multi-drug resistant A. baumannii secondary infection is associated with a two-fold increase in mortality. Here we investigated the use of the 8-hydroxyquinoline ionophore PBT2 to break resistance of A. baumannii to tetracycline class antibiotics.
2021-12-17 | GSE175535 | GEO
Project description:Phages against multi drug resistant bacteria
| PRJNA1098433 | ENA
Project description:Complete Genome Sequences of 10 Phages Lytic against Multidrug-Resistant Pseudomonas aeruginosa
Project description:Purpose: The goal of this study was to elucidate the collateral effects associated with OXA-23 overexpression on the Acinetobacter baumannii global transcriptome. Results: Besides the 99.73-fold increase in blaOXA-23 transcript upon IPTG induction, no other transcripts showed more than a 2-fold change compared to the wildtype control. This suggests that OXA-23 over expression to levels similarly observed in multi drug resistant A. baumannii clinical isolates does not effect the transcriptome.
2021-11-15 | GSE185203 | GEO
Project description:Novel Bacteriophages Active Against Multi-Drug Resistant Acinetobacter baumannii
Project description:Using Nanopore sequencing, our study has revealed a close correlation between genomic methylation levels and antibiotic resistance rates in Acinetobacter Baumannii. Specifically, the combined genome-wide DNA methylome and transcriptome analysis revealed the first epigenetic-based antibiotic-resistance mechanism in A. baumannii. Our findings suggest that the precise location of methylation sites along the chromosome could provide new diagnostic markers and drug targets to improve the management of multidrug-resistant A. baumannii infections.
Project description:Acinetobacter baumannii is a Gram-negative opportunistic pathogen that causes multiple infections, including pneumonia, bacteremia, and wound infections. Due to multiple intrinsic and acquired drug-resistance mechanisms, A. baumannii isolates are commonly multi-drug resistant and infections are notoriously difficult to treat. Therefore, it is important to identify mechanisms used by A. baumannii to survive stresses encountered during infection as a means of identifying new drug targets. In this study, we determined the transcriptional response of A. baumannii to hydrogen peroxide stress using RNASequencing. Upon exposure to hydrogen peroxide, A. baumannii differentially transcribes several hundred genes. In this study, we also determined the transcriptional profile of A. baumannii strains with the transcriptional regulators mumR or oxyR genetically inactivated and identified transcriptional differences between these strains and wild-type A. baumannii in response to hydrogen peroxide stress. In doing this, the function of A. baumannii OxyR in hydrogen peroxide stress resistance and regulation of genes required for hydrogen peroxide detoxification was defined. Moreover, the contribution of the uncharacterized regulator MumR to hydrogen peroxide stress resistance was also explored. This work reveals the transcriptome of an important human pathogen in the presence of hydrogen peroxide stress.