Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine, which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in determining geo-specific (‘terroir’) differences in grapes and thus ultimately in wine. This genomic plasticity might be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures. For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue.
Project description:Plants regenerated from tissue culture frequently show somaclonal variation. In this study we compared the transcriptomic and epigenetic state of embryogenic callus of grapevine with leaves from mature grapevine plants. In particular, we focussed on the expression of transposable elements and changes in siRNA abundance and genome-wide methylation in these tissues.
Project description:Bud endodormancy induction response of two genotypes (Seyval, a hybrid white wine grape and Vitis riparia, PI588259, a native North American grape species) was compared under long (15 h) and short (13 h) photoperiods. Proteins were extracted from both genotypes for all time points and experimental conditions. The proteins were separaed by 2D-PAGE, trypsin digested, and the peptides identified with a MALDI-TOF-TOF mass spectrometer. A master gel was made and mapped with all proteins from both genotypes. The proteins were identified by matching the peptide sequences against the 8X Vitis vinifera grape genome in NCBI. This study was funded by NSF grant DBI064755 and is the result of a collaboration between Dr. Anne Fennell at South Dakota State University and Dr. Grant R. Cramer at the University of Nevada, Reno.
Project description:Hydrogen cyanamide (HC) is an agrochemical compound frequently used to break bud dormancy in grapevine grown under mild winter conditions all over the world. The present study was carried out to get a better understanding of the molecular mechanism associated with HC to release bud dormancy in grapevine using RNA-seq based transcriptomic and tandem mass tag (TMT) based proteomic analysis.
Project description:itis vinifera cv. Tannat is largely cultivated in Uruguay for the production of high quality red wines. Its most notable characteristic is an elevated content of polyphenolic compounds, which provide an intense purple color and remarkable antioxidant properties to the wine. To characterize the genetic components encoding this important phenotypic characteristic, the genome of the Uruguayan Tannat clone UY11 was sequenced to 134X coverage using the Illumina technology and assembled with a mixed approach of de novo assembly and iterative mapping on the PN40024 reference genome. An approach based on both reference-guided annotation and de novo transcript assembly of RNA-Seq data allowed the definition of 3,673 genes not previously annotated in PN40024 that we consider novel, and the discovery of 2,228 genes not shared with the grapevine reference genome that we consider private to Tannat. Expression analysis showed that private genes contributed substantially (more than 50%) to the overall expression of enzymes involved in phenol and polyphenol biosynthesis indicating that the dispensable portion of the grapevine genome contains many private genes which are likely to contribute to the peculiar phenotypic characteristics of this grapevine variety.
Project description:We used Illumina RNA-Seq technology to carry out digital gene expression profiling of Dormant and non dormant buds of Shine Muscat Cultivar.127 pathways were annotated by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and metabolic, biosynthesis of secondry metabolite and. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis demonstrated that DEGs were involved in various metabolic processes, including phytohormone metabolism. The newly generated transcriptome and gene expression profiling data provide valuable genetic information for revealing transcriptomic variation during dormant and non dormant period in Grapevine and ultimately helpful in uplifting of table grape industry.