Project description:Pseudomonas syringae is an important plant pathogen that infects a wide variety of crops. The mgo (mangotoxin-generating operon) gene cluster produces an extracellular signaling molecule, leudiazen, and is highly conserved in Pseudomonas syringae strains. Here, we genetically removed mgo in Pseudomonas syringae pv. syringae (Pss) UMAF0158 to interrogate its impacts on bacterial infection. Loss of mgo not only alleviated the chlorosis symptom caused by Pss UMAF0158 infection, but also reduced bacterial population in tomato leaflets. Structure-activity relationship revealed that the diazeniumdiolate group and the isobutyl side chain of leudiazen are critical for its signaling activity. Through global transcriptome analysis, we found that mgo regulates the expression of a new gene cluster in addition to mangotoxin biosynthetic operon, namely RS17235-RS17245. This new gene cluster contributes to in planta survival of Pss UMAF0158 and is widely distributed in Pseudomonas syringae strains. Our results demonstrate that chemical signaling systems in plant pathogens play prominent roles in virulence and population increase and set stages for understanding downstream components of mgo-regulated signaling pathways.
Project description:Pseudomonas syringae pv. phaseolicola (Pph) is a significant bacterial pathogen of agricultural crops, and phage Φ6 and other members of the dsRNA virus family Cystoviridae undergo lytic (virulent) infection of Pph, using the type IV pilus as the initial site of cellular attachment. Despite the popularity of Pph/phage Φ6 as a model system in evolutionary biology, Pph resistance to phage Φ6 remains poorly characterized. To investigate differences between phage Φ6 resistant Pseudomonas syringae pathovar phaseolicola strains, we performed expression analysis of super and non piliated strains of Pseudomonas syringae to determine the genetic cause of resistance to viral infection.
Project description:Pseudomonas syringae, a Gram-negative plant pathogen, infects more than 50 crops with its type III secretion system (T3SS) and causes severe economic losses around the world. Although the mechanisms of virulence-associated regulators of P. syringae T3SS have been studied for decades, the crosstalk and network underlying these regulators are still elusive. Previously, we have individually studied a group of T3SS regulators, including AefR, HrpS, and RhpRS. In the present study, we found 4 new T3SS regulator genes (envZ, ompR, tsiS and phoQ) via transposon-mediated mutagenesis. Two-component systems EnvZ and TsiS natively regulate T3SS. In order to uncover the crosstalk between 16 virulence-associated regulators, (including AefR, AlgU, CvsR, GacA, HrpL, HrpR, HrpS, MgrA, OmpR, PhoP, PilR, PsrA, RhpR, RpoN, TsiR and Vfr) in P. syringae, we mapped an intricate network named PSVnet (Pseudomonas syringae Virulence Regulatory Network) by combining differentially expression genes in RNA-seq and binding loci in ChIP-seq of all regulators.
Project description:Compare expression profiles between Col-0 and transgenic lines overexpressing AtFAAH(At5g64440) after inoculated with nonhost pathogen Pseudomonas syringae pv. syringae at 0, 6 and 12 hours.
Project description:Pseudomonas syringae uses HrpRSL to regulate the expression of type III secretion system (T3SS) genes and bacterial virulence. However, the molecular mechanism and the regulons of HrpRSL have yet to be fully elucidated. Here, we performed chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) on HrpRSL and Lon. The direct regulation of these genes by corresponding regulator has been confirmed by Electrophoretic mobility shift assays (EMSAs) and quantitative real-time polymerase chain reactions (qRT-PCR). Binding motifs are found by using MEME suite and verified by footprint assays in vitro. Collectively, this work provides new cues to better understand the detailed regulatory networks of T3SS systems in P. syringae. ChIP-seq analysis of HrpRSL and Lon in Pseudomonas syringas
Project description:Investigation of whole genome gene expression AdnA in Pseudomonas fluorescens, an ortholog of FleQ in P. aeruginosa, regulates both motility and flagella-mediated attachment to various surfaces. A whole genome microarray determined the AdnA transcriptome by comparing the gene expression pattern of wild-type Pf0-1 to that of Pf0-2x (adnA-) in broth culture. In the absence of AdnA, expression of 92 genes was decreased, while 11 genes showed increased expression. Analysis of 16 of these genes fused to lacZ confirmed the microarray results. Several genes were further evaluated for their role in motility and biofilm formation. Two genes, Pfl01_1508 and Pfl01_1517, affected motility and had different effects on biofilm formation in Pf0-1. These two genes are predicted to encode proteins similar to the glycosyl transferases FgtA1 and FgtA2, which have been shown to be involved in virulence and motility in P. syringae. Three other genes, Pfl01_1516, Pfl01_1572, and Pfl01_1573, not previously associated with motility and biofilm formation in Pseudomonas had similar affects on biofilm formation in Pf0-1. Deletion of each of these genes led to different motility defects. Our data revealed an additional level of complexity in the control of flagella function beyond the core genes known to be required, and may yield insights into processes important for environmental persistence of P. fluorescens Pf0-1. Catalog design for Pseudomonas fluorescens Pf0-1 (Taxonomy Id: 205922) covering NC_007492. Probes selected for 5736/5736 sequences. Median number of probes/sequence is 13 with an average of 13.00. Each probe will be replicated 5 times on the chip. Probes are randomly distributed over the surface of the array. Unused features have been filled with randomly generated probes of comparable GC content.
Project description:This study evaluates the transcriptome of transgenic Arabidopsis seedlings expressing the effector HopBB1 from the bacteria Pseudomonas syringae