Project description:<p>Accurate metabolite identification remains one of the primary challenges in a metabolomics study. A reliable chemical spectral library increases the confidence in annotation, and the availability of raw and annotated data in public databases facilitates the transfer of Liquid chromatography coupled to mass spectrometry (LC–MS) methods across laboratories. Here, we illustrate how the combination of MS2 spectra, accurate mass, and retention time can improve the confidence of annotation and provide techniques to create a reliable library for all ion fragmentation (AIF) data with a focus on the characterization of the retention time. The resulting spectral library incorporates information on adducts and in-source fragmentation in AIF data, while noise peaks are effectively minimized through multiple deconvolution processes. We also report the development of the Mass Spectral LIbrary MAnager (MS-LIMA) tool to accelerate library sharing and transfer across laboratories. This library construction strategy improves the confidence in annotation for AIF data in LC–MS-based metabolomics and will facilitate the sharing of retention time and mass spectral data in the metabolomics community.</p>
2019-10-30 | MTBLS1040 | MetaboLights
Project description:Long-term cellulose enrichment selects for highly cellulolytic consortia and competition for public goods
Project description:Annotation of metabolites is an essential, yet problematic, aspect of mass spectrometry (MS)-based metabolomics assays. The current repertoire of definitive annotations of metabolite spectra in public MS databases is limited and suffers from lack of chemical and taxonomic diversity. Furthermore, the heterogeneity of the data prevents the development of universally applicable metabolite annotation tools. Here we present a combined experimental and computational platform to advance this key issue in metabolomics. WEIZMASS is a unique reference metabolite spectral library developed from high-resolution MS data acquired from a structurally diverse set of 3,540 plant metabolites. We also present MatchWeiz, a multi-module strategy using a probabilistic approach to match library and experimental data. This strategy allows efficient and high-confidence identification of dozens of metabolites in model and exotic plants, including metabolites not previously reported in plants or found in few plant species to date.
Project description:Enzymes are instrumental to life and key actors of pathologies, making them relevant drug targets. Most enzyme inhibitors consist of small molecules. Although efficient, their development is long, costly and can come with unwanted off-targeting. Substantial gain in specificity and discovery efficiency is possible using biologicals. Best exemplified by antibodies, these drugs derived from living systems display high specificity and their development is eased by harnessing natural evolution. Aptamers are nucleic acids sharing functional similarities with antibodies while being deprived of many of their limitations. Yet, the success rate of inhibitory aptamer discovery remained hampered by the lack of an efficient discovery pipeline. In this work, we addressed this issue by introducing an ultrahigh-throughput strategy combining in vitro selection, microfluidic screening and bioinformatics. We demonstrate its efficiency by discovering a modified aptamer that specifically and strongly inhibits SPM-1, a beta-lactamase that remained recalcitrant to the development of potent inhibitors.
Project description:Intra-specific polymorphism in copy number is documented in many organisms, including human and chimpanzee, but very little is known for other great apes. This study aims to provide CNVs data for orangutan, gorilla, bonobo and chimpanzee, and compare the CNV patterns among these species, as well as with human CNVs and segmental duplications from public databases.
2011-08-03 | GSE30559 | GEO
Project description:A "public bulk" strategy identifies the causal gene for male sterility in ms1 soybean