Project description:As the most prevalent type of alternative splicing in animal cells, exon skipping plays an important role in expanding the diversity of transcriptome and proteome, thereby participating the regulation of diverse physiological and pathological processes such as development, aging and cancer. Cellular senescence serves as an anti-cancer mechanism could also contribute to individual aging. Although the dynamic changes of exon skipping during cellular senescence were revealed, its biological consequence and upstream regulator remain poorly understood. Here, by using human foreskin fibroblasts (HFF) replicative senescence as a model, we discovered that splicing factor PTBP1 was an important contributor for global exon skipping events during senescence. Down-regulated expression of PTBP1 induced senescence-associated phenotypes and related mitochondrial functional changes. Mechanistically, PTBP1 binds to the third exon of mitochondrial complex I subunit coding gene NDUFV3 and protects the exon from skipping. We further confirmed that exon skipping of NDUFV3 correlates with and partially contributes to cellular senescence and related mitochondrial functional changes upon PTBP1 knockdown. Together, we revealed for the first time that mitochondrial related gene NDUFV3 is a new downstream target for PTBP1-regulated exon skipping to mediate cellular senescence and mitochondrial functional changes.
Project description:Alternative splicing (AS) generates extensive transcriptomic and proteomic complexity. However, the functions of species- and lineage-specific splice variants are largely unknown. Here, we show that mammalian-specific skipping of exon 9 of PTBP1 alters its splicing regulatory activities and affects the inclusion levels of numerous exons. During neurogenesis, skipping of exon 9 reduces PTBP1 repressive activity so as to facilitate activation of a brain-specific AS program. Engineered skipping of the orthologous exon in chicken cells induces a large number of mammalian-like AS changes in PTBP1 target exons. These results thus reveal that a single exon skipping event in an RNA binding regulator directs numerous AS changes between species. The results further suggest that these changes contributed to evolutionary differences in the formation of vertebrate nervous systems. This study contains two sets of samples: (Set 1) mRNA profiling of human 293 cells subjected to four different conditions in two biological replicates: non-targetting control siRNA, PTBP1 and PTBP2 siRNA, PTBP1 and PTBP2 siRNA with overexpression of full-length human PTBP1, PTBP1 and PTBP2 siRNA with overexpression of exon-excluded human PTBP1. (Set 2) mRNA profiling of chicken DT40 cells with 3 genotypes in two bioligcal replicates: wildtype cells, cells with PTBP1 exon 8 (orthologous to human PTBP1 exon 9) deleted in one allele, and cells with PTBP1 exon 8 deleted in both alleles.
Project description:Alternative splicing (AS) generates extensive transcriptomic and proteomic complexity. However, the functions of species- and lineage-specific splice variants are largely unknown. Here, we show that mammalian-specific skipping of exon 9 of PTBP1 alters its splicing regulatory activities and affects the inclusion levels of numerous exons. During neurogenesis, skipping of exon 9 reduces PTBP1 repressive activity so as to facilitate activation of a brain-specific AS program. Engineered skipping of the orthologous exon in chicken cells induces a large number of mammalian-like AS changes in PTBP1 target exons. These results thus reveal that a single exon skipping event in an RNA binding regulator directs numerous AS changes between species. The results further suggest that these changes contributed to evolutionary differences in the formation of vertebrate nervous systems.
Project description:The vertebrate and neural-specific SR-related protein nSR100/SRRM4 regulates an extensive program of alternative splicing with critical roles in nervous system development. However, the mechanism by which nSR100 controls its target exons is poorly understood. We demonstrate that nSR100-dependent neural exons are associated with a unique configuration of intronic cis-elements that promote rapid switch-like regulation during neurogenesis. A key feature of this configuration is the insertion of specialized intronic enhancers between polypyrimidine tracts and acceptor sites that bind nSR100 to potently activate exon inclusion in neural cells, while weakening 3' splice site recognition and contributing to exon skipping in non-neural cells. nSR100 further operates by forming multiple interactions with early spliceosome components bound proximal to 3' splice sites. These multifaceted interactions achieve dominance over neural exon silencing mediated by the splicing regulator PTBP1. The results thus illuminate a widespread mechanism by which a critical neural exon network is activated during neurogenesis. RNA-Seq was used to obtain mRNA profiles of various N2A and 293T cell lines from human and mouse, respectively, to investigate the roles of nSR100, Ptbp1 and U2af65 in alternative splicing regulation. PAR-iCLIP and iCLIP experiments followed by high throughput sequencing were conducted to obtain RNA binding profiles of nSR100, PTBP1 and U2af65.
Project description:DallePazze2014 - Cellular senescene-induced
mitochondrial dysfunction
This model is described in the article:
Dynamic modelling of
pathways to cellular senescence reveals strategies for targeted
interventions.
Dalle Pezze P, Nelson G, Otten EG,
Korolchuk VI, Kirkwood TB, von Zglinicki T, Shanley DP.
PLoS Comput. Biol. 2014 Aug; 10(8):
e1003728
Abstract:
Cellular senescence, a state of irreversible cell cycle
arrest, is thought to help protect an organism from cancer, yet
also contributes to ageing. The changes which occur in
senescence are controlled by networks of multiple signalling
and feedback pathways at the cellular level, and the interplay
between these is difficult to predict and understand. To
unravel the intrinsic challenges of understanding such a highly
networked system, we have taken a systems biology approach to
cellular senescence. We report a detailed analysis of
senescence signalling via DNA damage, insulin-TOR, FoxO3a
transcription factors, oxidative stress response, mitochondrial
regulation and mitophagy. We show in silico and in vitro that
inhibition of reactive oxygen species can prevent loss of
mitochondrial membrane potential, whilst inhibition of mTOR
shows a partial rescue of mitochondrial mass changes during
establishment of senescence. Dual inhibition of ROS and mTOR in
vitro confirmed computational model predictions that it was
possible to further reduce senescence-induced mitochondrial
dysfunction and DNA double-strand breaks. However, these
interventions were unable to abrogate the senescence-induced
mitochondrial dysfunction completely, and we identified
decreased mitochondrial fission as the potential driving force
for increased mitochondrial mass via prevention of mitophagy.
Dynamic sensitivity analysis of the model showed the network
stabilised at a new late state of cellular senescence. This was
characterised by poor network sensitivity, high signalling
noise, low cellular energy, high inflammation and permanent
cell cycle arrest suggesting an unsatisfactory outcome for
treatments aiming to delay or reverse cellular senescence at
late time points. Combinatorial targeted interventions are
therefore possible for intervening in the cellular pathway to
senescence, but in the cases identified here, are only capable
of delaying senescence onset.
This model is hosted on
BioModels Database
and identified by:
BIOMD0000000582.
To cite BioModels Database, please use:
BioModels Database:
An enhanced, curated and annotated resource for published
quantitative kinetic models.
To the extent possible under law, all copyright and related or
neighbouring rights to this encoded model have been dedicated to
the public domain worldwide. Please refer to
CC0
Public Domain Dedication for more information.
Project description:The vertebrate and neural-specific SR-related protein nSR100/SRRM4 regulates an extensive program of alternative splicing with critical roles in nervous system development. However, the mechanism by which nSR100 controls its target exons is poorly understood. We demonstrate that nSR100-dependent neural exons are associated with a unique configuration of intronic cis-elements that promote rapid switch-like regulation during neurogenesis. A key feature of this configuration is the insertion of specialized intronic enhancers between polypyrimidine tracts and acceptor sites that bind nSR100 to potently activate exon inclusion in neural cells, while weakening 3' splice site recognition and contributing to exon skipping in non-neural cells. nSR100 further operates by forming multiple interactions with early spliceosome components bound proximal to 3' splice sites. These multifaceted interactions achieve dominance over neural exon silencing mediated by the splicing regulator PTBP1. The results thus illuminate a widespread mechanism by which a critical neural exon network is activated during neurogenesis.
Project description:During the course of surveying Medulloblastoma (MB) group specific lncRNAs, we found that SPRIGHTLY was highly upregulated in group 4 cell lines and patient derived xenografts (PDX). Its knock down reduced cell proliferation, invasion, and colony formation. It binds to the intron region of SMYD3 pre-mRNA and regulates SMYD3 exon 5 skipping together with PTBP1 protein. In group 4 cell line, the increase of SMYD3 affects EGFR pathway and regulates its downstream gene transcription. Inquiring SMYD3 and SMYD3 E5D transcripts expression in the patient RNA-seq data suggests that balancing two transcripts level seems to be associated with tumor development or maintenance.
Project description:PPARγ regulates glucose and lipid homeostasis, insulin signaling and adipocyte differentiation. Here we report the skipping of exon 5 as legitimate splicing event generating PPARγΔ5, a new truncated isoform lacking the ligand binding domain. PPARγΔ5 is endogenously expressed in human adipose tissue and during adipocyte differentiation, lacks the ligand-dependent transactivation ability and acts as dominant negative reducing PPARγ activity. Ligand-mediated PPARγ activation induces exon 5 skipping in a negative feedback loop, suggesting alternative splicing as a new mechanism regulating PPARγ activity. PPARγΔ5 over-expression modifies PPARγ-induced transcriptional network, significantly impairing the differentiation ability of adipocyte precursor cells. Additionally, PPARγΔ5 expression in subcutaneous adipose tissue positively correlates with BMI in two independent cohorts of obese and diabetic patients. From a functional perspective, PPARγΔ5 mimics PPARG dominant negative mutated receptors, possibly contributing to adipose tissue dysfunctions. These findings open unexplored scenario in PPARG regulation and PPARγ-related diseases.
Project description:RNA-binding proteins (RBPs) bind at different positions of pre-mRNA molecules to promote or reduce the usage of a particular exon. Seeking to understand the working principle of these positional effects, we develop a capture RIC-seq (CRIC-seq) method to enrich specific RBP-associated in situ proximal RNA-RNA fragments for deep sequencing. We determine hnRNPA1-, SRSF1-, and PTBP1-associated proximal RNA-RNA contacts and regulatory mechanisms in HeLa cells. Unexpectedly, the 3D RNA map analysis shows that PTBP1-associated loops in individual introns preferentially promote cassette exon splicing by accelerating asymmetric intron removal, whereas the loops spanning across cassette exon primarily repress splicing. These “positional rules” can faithfully predict PTBP1-regulated splicing outcomes. We further demonstrate that cancer-related splicing quantitative trait loci can disrupt RNA loops by reducing PTBP1 binding on pre-mRNAs to cause aberrant splicing in tumors. Our study presents a powerful method for exploring the functions of RBP-associated RNA-RNA proximal contacts in gene regulation and disease.
Project description:RNA-binding proteins (RBPs) bind at different positions of pre-mRNA molecules to promote or reduce the usage of a particular exon. Seeking to understand the working principle of these positional effects, we develop a capture RIC-seq (CRIC-seq) method to enrich specific RBP-associated in situ proximal RNA-RNA fragments for deep sequencing. We determine hnRNPA1-, SRSF1-, and PTBP1-associated proximal RNA-RNA contacts and regulatory mechanisms in HeLa cells. Unexpectedly, the 3D RNA map analysis shows that PTBP1-associated loops in individual introns preferentially promote cassette exon splicing by accelerating asymmetric intron removal, whereas the loops spanning across cassette exon primarily repress splicing. These “positional rules” can faithfully predict PTBP1-regulated splicing outcomes. We further demonstrate that cancer-related splicing quantitative trait loci can disrupt RNA loops by reducing PTBP1 binding on pre-mRNAs to cause aberrant splicing in tumors. Our study presents a powerful method for exploring the functions of RBP-associated RNA-RNA proximal contacts in gene regulation and disease.