Project description:Although the biodegradation of biodegradable plastics in soil and compost is well-studied, there is little knowledge on the metabolic mechanisms of synthetic polymers degradation by marine microorganisms. Here, we present a multiomics study to elucidate the biodegradation mechanism of a commercial aromatic-aliphatic copolyester film by a marine microbial enrichment culture. The plastic film and each monomer can be used as sole carbon source. Our analysis showed that the consortium synergistically degrades the polymer, different degradation steps being performed by different members of the community. Analysis of gene expression and translation profiles revealed that the relevant degradation processes in the marine consortium are closely related to poly(ethylene terephthalate) biodegradation from terrestrial microbes. Although there are multiple genes and organisms with the potential to perform a degradation step, only a few of these are active during biodegradation. Our results elucidate the potential of marine microorganisms to mineralize biodegradable plastic polymers and describe the mechanisms of labor division within the community to get maximum energetic yield from a complex synthetic substrate.
2020-09-25 | PXD018391 | Pride
Project description:Plastic film mulching affect functional microbes.
| PRJNA630145 | ENA
Project description:Plastic film mulching affect functional microbes.
Project description:Optimisation of DNA-protein co-extraction from the thin microbial biofilm inhabiting marine plastic debris for meta-omics and comparative metaproteomics analysis.
Project description:Proteome analysis of the surface matrix of chitinous barrier membranes of the tunicate Ciona intestinalis Type A, a marine filter-feeding invertebrate chordate. This chitinous membrane separate food microbes from the gut epithelium, as a physical barrier. As controls, we used mucus cords from the esophagus.
Project description:To characterize the taxonomic and functional diversity of biofilms on plastics in marine environments, plastic pellets (PE and PS, ø 3mm) and wooden pellets (as organic control) were incubated at three stations: at the Baltic Sea coast in Heiligendamm (coast), in a dead branch of the river Warnow in Warnemünde (inlet), and in the Warnow estuary (estuary). After two weeks of incubation, all pellets were frozen for subsequent metagenome sequencing and metaproteomic analysis. Biofilm communities in the samples were compared on multiple levels: a) between the two plastic materials, b) between the individual incubation sites, and c) between the plastic materials and the wooden control. Using a semiquantitative approach, we established metaproteome profiles, which reflect the dominant taxonomic groups as well as abundant metabolic functions in the respective samples.
2021-11-01 | PXD012062 | Pride
Project description:Plastic degradation potential of marine microorganisms