Project description:Two potato cultivars, Russet Burbank and Bionta, were inoculated with three different endophytes containing different AHL types. The impact of the endophytes to the different cultivars was measured by gene expression analysis with a customized microarray
Project description:Small RNAs, including microRNAs (miRNAs), phased secondary small interfering RNAs (phasiRNA), and heterochromatic small interfering RNAs (hc-siRNA) are an essential component of gene regulation. To establish a broad potato small RNA atlas, we constructed an expression atlas of leaves, flowers, roots, and tubers of Desiree and Eva, which are commercially important potato (Solanum tuberosum) cultivars. All small RNAs identified were observed to be conserved between both cultivars, supporting the hypothesis that small RNAs have a low evolutionary rate and are mostly conserved between lineages. However, we also found that a few miRNAs showed differential accumulation between the two potato cultivars, and that hc-siRNAs have a tissue specific expression. We further identified dozens of reproductive and non-reproductive phasiRNAs originating from coding and noncoding regions that appeared to exhibit tissue-specific expression. Together, this study provides an extensive small RNA profiling of different potato tissues that might be used as a resource for future investigations.
Project description:RNA-sequencing data of three potato cultivars (Deisree, Sarpo Mira and SW92-1015) with different susceptibility to Phytopthora infestans causing late blight 24 hours post P. infestans infection
Project description:Wheat is a cereal grain and one of the world’s major food crops. Recent advances in wheat genome sequencing are by now facilitating genomic and proteomic analyses of this crop. However, little is known about the protein levels of hexaploid versus tetraploid wheat cultivars, and knowledge on phosphorylated proteins still limited. Using our recently established (phospho)proteomic workflow, we performed a parallel analysis of the proteome and phosphoproteome on seedling leaves from two hexaploid wheat cultivars (Pavon 76 and USU-Apogee) and a tetraploid wheat (Senatore Cappelli). This revealed that a large portion of proteins and phosphosites can be quantified in all cultivars. Our shotgun proteomics data revealed a high similarity between hexaploid and tetraploid varieties with respect to protein abundance. However, we could identify a set of proteins that were differentially abundant between hexaploid and tetraploid cultivars. In addition, already at seedling stage, a small set of proteins were differential between the small (USU-Apogee) and larger hexaploid wheat cultivar (Pavon 76), which could potentially act as growth predictors. Finally, the phosphosites identified in this study can be retrieved from the in-house developed plant PTM-Viewer (bioinformatics.psb.ugent.be/webtools/ptm_viewer/), making this the first repository for phosphorylated wheat proteins. This paves the way for further in depth, quantitative (phospho)proteome-wide differential analyses upon a specific trigger or environmental change.