Project description:Anopheles gambiae mosquitoes exhibit an endophilic, nocturnal blood feeding behavior. Despite the importance of light as a regulator of malaria transmission, our knowledge on the molecular interactions between environmental cues, the circadian oscillators and the host seeking and feeding systems of the Anopheles mosquitoes is limited. In the present study, we show that the blood feeding behavior of mosquitoes is under circadian control and can be modulated by light pulses, both in a clock dependent and in an independent manner. Short light pulses (~2-5 min) in the dark phase can inhibit the blood-feeding propensity of mosquitoes momentarily in a clock independent manner, while longer durations of light stimulation (~1-2 h) can induce a phase advance in blood-feeding propensity in a clock dependent manner. The temporary feeding inhibition after short light pulses may reflect a masking effect of light, an unknown mechanism which is known to superimpose on the true circadian regulation. Nonetheless, the shorter light pulses resulted in the differential regulation of a variety of genes including those implicated in the circadian control, suggesting that light induced masking effects also involve clock components. Light pulses (both short and longer) also regulated genes implicated in feeding as well as different physiological processes like metabolism, transport, immunity and protease digestions. RNAi-mediated gene silencing assays of the light pulse regulated circadian factors timeless, cryptochrome and three takeout homologues significantly up-regulated the mosquito's blood-feeding propensity. In contrast, gene silencing of light pulse regulated olfactory factors down-regulated the mosquito's propensity to Our study suggests that the mosquitoâs feeding behavior is under circadian control. Long and short light pulses can induce inhibition of blood-feeding through circadian and unknown mechanisms, respectively, that involve chemosensory factors. A series of assays were performed to assess transcriptomic changes in mosquitoes upon light stimulation and blood feeding in order to assess relationships between photic stimulation and modulation of feeding behavior.
Project description:Proteomic analysis of Anopheles gambiae brain tissue after in-gel trypsin digestion. To gain insights into neurobiology of the Anopheles gambiae mosquito, we carried out a proteomic analysis of its brain using a comprehensive proteomic approach.
Project description:Anopheles gambiae mosquitoes exhibit an endophilic, nocturnal blood feeding behavior. Despite the importance of light as a regulator of malaria transmission, our knowledge on the molecular interactions between environmental cues, the circadian oscillators and the host seeking and feeding systems of the Anopheles mosquitoes is limited. In the present study, we show that the blood feeding behavior of mosquitoes is under circadian control and can be modulated by light pulses, both in a clock dependent and in an independent manner. Short light pulses (~2-5 min) in the dark phase can inhibit the blood-feeding propensity of mosquitoes momentarily in a clock independent manner, while longer durations of light stimulation (~1-2 h) can induce a phase advance in blood-feeding propensity in a clock dependent manner. The temporary feeding inhibition after short light pulses may reflect a masking effect of light, an unknown mechanism which is known to superimpose on the true circadian regulation. Nonetheless, the shorter light pulses resulted in the differential regulation of a variety of genes including those implicated in the circadian control, suggesting that light induced masking effects also involve clock components. Light pulses (both short and longer) also regulated genes implicated in feeding as well as different physiological processes like metabolism, transport, immunity and protease digestions. RNAi-mediated gene silencing assays of the light pulse regulated circadian factors timeless, cryptochrome and three takeout homologues significantly up-regulated the mosquito's blood-feeding propensity. In contrast, gene silencing of light pulse regulated olfactory factors down-regulated the mosquito's propensity to Our study suggests that the mosquito’s feeding behavior is under circadian control. Long and short light pulses can induce inhibition of blood-feeding through circadian and unknown mechanisms, respectively, that involve chemosensory factors.
Project description:Background: The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Results: We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. Conclusions: The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.
Project description:Senescence is a biological phenomenon experienced by all living eukaryote organisms. Genome-wide gene expression associated with aging has been explored in model organisms such as Drosophila melanogaster and Caenorhabditis elegans, but this has not been well understood in African malaria vector, Anopheles gambiae. Gene expression profiling using DNA microarray allows for simultaneous study of changes in mRNA levels for thousands of genes. This study examined genome-wide gene expression during aging process in An. gambiae. The influence of blood feeding on gene expression was also examined. The data can be used to further our understanding of mosquito senescence and identify biomarkers for mosquito age grading.
Project description:Anopheline mosquitoes frequently take multiple blood meals in a single gonotrophic cycle. In this study we determined patterns of gene expression in Anopheles gambiae females blood fed twice within the first gonotrophic cycle.
Project description:Senescence is a biological phenomenon experienced by all living eukaryote organisms. Genome-wide gene expression associated with aging has been explored in model organisms such as Drosophila melanogaster and Caenorhabditis elegans, but this has not been well understood in African malaria vector, Anopheles gambiae. Gene expression profiling using DNA microarray allows for simultaneous study of changes in mRNA levels for thousands of genes. This study examined genome-wide gene expression during aging process in An. gambiae. The influence of blood feeding on gene expression was also examined. The data can be used to further our understanding of mosquito senescence and identify biomarkers for mosquito age grading. Transcriptional profiles of Anopheles gambiae female mosquitoes were determined at 1, 4, 10, 19 and 28 days post adult eclosion. Additionally mosquitoes that had access to blood meals were compared to those that were maintained with access to only water and sugar.
Project description:With their genome sequenced, Anopheles gambiae mosquitoes now serve as a powerful tool for basic research in comparative, evolutionary and developmental biology. The knowledge generated by these studies is expected to reveal molecular targets for novel vector control and pathogen transmission blocking strategies. Comparisons of gene-expression profiles between adult male and nonblood-fed female Anopheles gambiae mosquitoes revealed that roughly 22% of the genes showed sex-dependent regulation. Blood-fed females switch the majority of their metabolism to blood digestion and egg formation within 3 h after the meal is ingested, in detriment to other activities such as flight and response to environment stimuli. Changes in gene expression are most evident during the first, second and third days after a blood meal, when as many as 50% of all genes showed significant variation in transcript accumulation. After laying the first cluster of eggs (between 72 and 96 h after the blood meal), mosquitoes return to a nongonotrophic stage, similar but not identical to that of 3-dayold nonblood-fed females. Ageing and/or the nutritional state of mosquitoes at 15 days after a blood meal is reflected by the down-regulation of 5% of all genes. A full description of the large number of genes regulated at each analysed time point and each biochemical pathway or biological processes in which they are involved is not possible within the scope of this contribution. Therefore, we present descriptions of groups of genes displaying major differences in transcript accumulation during the adult mosquito life. However, a publicly available searchable database (Anopheles gambiae Gene Expression Database at UC Irvine) has been made available so that detailed analyses of specific groups of genes based on their descriptions, functions or levels of gene expression variation can be performed by interested investigators according to their needs. Keywords: response to bloodmeal