Project description:Background: The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Results: We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. Conclusions: The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds.
Project description:Background: The Anopheles gambiae salivary glands play a major role in malaria transmission and express a variety of bioactive components that facilitate blood-feeding by preventing platelet aggregation, blood clotting, vasodilatation, and inflammatory and other reactions at the probing site on the vertebrate host. Results: We have performed a global transcriptome analysis of the A. gambiae salivary gland response to blood-feeding, to identify candidate genes that are involved in hematophagy. A total of 4,978 genes were found to be transcribed in this tissue. A comparison of salivary gland transcriptomes prior to and after blood-feeding identified 52 and 41 transcripts that were significantly up-regulated and down-regulated, respectively. Ten genes were further selected to assess their role in the blood-feeding process using RNAi-mediated gene silencing methodology. Depletion of the salivary gland genes encoding D7L2, anophelin, peroxidase, the SG2 precursor, and a 5'nucleotidase gene significantly increased probing time of A. gambiae mosquitoes and thereby their capacity to blood-feed. Conclusions: The salivary gland transcriptome comprises approximately 38% of the total mosquito transcriptome and a small proportion of it is dynamically changing already at two hours in response to blood feeding. A better understanding of the salivary gland transcriptome and its function can contribute to the development of pathogen transmission control strategies and the identification of medically relevant bioactive compounds. Salivary glands from blood-fed vs. unfed A. gambiae. 3 replicates.
Project description:In spite of the many recent developments in the field of vector sialomics, the salivary glands of larvalmosquitoes have been largely unexplored. We used whole-transcriptome microarray analysis to create a gene-expression profile of the salivary gland tissue of fourth-instar Anopheles gambiae larvae, and compare it to the gene-expression profile of a matching group of whole larvae. We identified a total of 221 probes with expression values that were (a) significantly enriched in the salivary glands, and (b)sufficiently annotated as to allow the prediction of the presence/absence of signal peptides in their corresponding gene products. Based on available annotation of the protein sequences associated with these probes, we propose that the main roles of larval salivary secretions include: (a) immune response, (b) mouthpart lubrication, (c) nutrient metabolism, and (d) xenobiotic detoxification. Other highlights of the study include the cloning of a transcript encoding a previously unknown salivary defensin (AgDef5), the confirmation of mucus secretion by the larval salivary glands, and the first report of salivary lipocalins in the Culicidae. Keywords: Anopheles gambiae, salivary gland, Diptera, gene expression, salivary defensin, transcriptome, salivary lipocalin
Project description:Proteomic analysis of Anopheles gambiae brain tissue after in-gel trypsin digestion. To gain insights into neurobiology of the Anopheles gambiae mosquito, we carried out a proteomic analysis of its brain using a comprehensive proteomic approach.
Project description:Salivary gland proteins of Anopheles mosquitoes offer attractive targets to understand interactions with sporozoites, blood feeding behavior, homeostasis and immunological evaluation of malaria vectors and parasite interactions. To date limited studies have been carried out to elucidate salivary proteins of An. stephensi salivary glands. The aim of the present study was to provide detailed analytical attributives of functional salivary gland proteins of urban malaria vector An. stephensi. A proteomic approach combining one-dimensional electrophoresis (1DE), ion trap liquid chromatography mass spectrometry (LC/MS/MS) and computational bioinformatic analysis was adopted to provide the first direct insight into identification and functional characterization of known salivary proteins and novel salivary proteins of An. stephensi. Computational studies by online servers namely, Mascot and OMSSA algorithms identified a total of 36 known salivary proteins and 123 novel proteins analysed by LC/MS/MS. This first report describes a baseline proteomic catalogue of 159 salivary proteins belonging to various categories of signal transduction, regulation of blood coagulation cascade, and various immune and energy pathways of An. stephensi sialo-transcriptome by mass spectrometry. Our results may serve as basis to provide a putative functional role of proteins into concept of blood feeding, biting behavior and other aspects of vector-parasite host interactions for parasite development in anopheline mosquitoes.
Project description:Background: Anopheles culicifacies is a rural vector of malaria in tropical and sub tropical South East Asian region. The salivary gland of the mosquito is the target for sporozoite interaction, blood feeding behavior, haemostasis and vector-parasite interactions. Malaria parasite matures inside the salivary gland, gain competence and transmitted to the host along with the saliva during biting. The importance of the proteins expressed in salivary gland is the first step in understanding the physiology of blood feeding and may provide insights into vector- parasite interactions. Since, no genomic or transcriptomics information is available of Anopheles culicifacies, therefore locally expressed functional proteins in salivary glands are of much importance. . Method: In this study, 1DE protein and in solution digestion was combined with tandem mass spectrometry (nano LC-MS/MS) and computational bioinformatics for data mining was employed to study the proteome profile of salivary glands of sugar fed An. culicifacies mosquito species. Functional annotation of all the identified proteins was carried out using gene ontology tools, CELLO and SMART analysis software. Results: Total 102 proteins were identified and analysed by SEQUEST algorithm against mosquito protein database from Uniprot/NCBI. Out of which 81 proteins were identified using gel free approach and 21 proteins using in-gel approach and 15 were common among these two approaches. All the identified proteins were categorized in to 23 groups of biological processes using GO tool. 7 proteins were depicted to be secretary in nature by investigating the signal peptide present. Potential proteins with unknown function were predicted by analyzing their functional association with other characterized proteins by STRING algorithm and were categorized in cell adhesion, cytoskeleton and membrane trafficking networks. Conclusion: Our study elucidates the first proteomic dataset of An. culicifacies salivary gland proteins. Functional annotation of salivary proteins and complementary gene ontology assignments in An. culicifacies species may contribute towards understanding the complex physiology of the tissues in this species. This proteome baseline data may facilitate the discernment of salivary glands and parasite correlation during blood feeding. Furthermore, this mass spectrometry based proteomic data may also provide insights into the elucidation of role of differential functional proteins present in refractory An. culicifacies mosquito and may be useful for development of effective malaria control strategies.
Project description:Senescence is a biological phenomenon experienced by all living eukaryote organisms. Genome-wide gene expression associated with aging has been explored in model organisms such as Drosophila melanogaster and Caenorhabditis elegans, but this has not been well understood in African malaria vector, Anopheles gambiae. Gene expression profiling using DNA microarray allows for simultaneous study of changes in mRNA levels for thousands of genes. This study examined genome-wide gene expression during aging process in An. gambiae. The influence of blood feeding on gene expression was also examined. The data can be used to further our understanding of mosquito senescence and identify biomarkers for mosquito age grading.
Project description:Transmission of malaria is dependent on the successful completion of the Plasmodium lifecycle in the Anopheles vector. Major obstacles are encountered in the midgut tissue, where most parasites are killed by the mosquito’s immune system. In the present study, DNA microarray analyses have been used to compare Anopheles gambiae responses to invasion of the midgut epithelium by the ookinete stage of the human pathogen Plasmodium falciparum and the rodent experimental model pathogen P. berghei. Invasion by P. berghei had a more profound impact on the mosquito transcriptome, including a variety of functional gene classes, while P. falciparum elicited a broader immune response at the gene transcript level. Ingestion of human malaria-infected blood lacking invasive ookinetes also induced a variety of immune genes, including several anti-Plasmodium factors. Keywords: Anopheles gambiae, Plasmodium falciparum, ookinete, invasion, innate immunity
Project description:In Sub-Saharan Africa, Anopheles gambiae Giles (Diptera: Culicidae) largely contributes to malaria transmission, in direct relation to environmental conditions influencing the vector ecology. Therefore, our study aimed to compare the proteomes of An. gambiae according to varying insecticide pressures associated to cotton crops also integrating different population origins from two climatic regions of Burkina Faso.