Project description:In this study we used Illumina RNA-seq to identify genes expressed by A. veronii in mid-log phase growth in a rich medium and within the digestive tract of the medicinal leech. Our results shed light on the physiology of A. veronii during colonization of the leech gut.
Project description:In this study we used Illumina RNA-seq to identify genes expressed by A. veronii in mid-log phase growth in a rich medium and within the digestive tract of the medicinal leech. Our results shed light on the physiology of A. veronii during colonization of the leech gut. A comparison of Illumina RNA-seq of A. veronii in vivo versus in vitro.
Project description:Orphan genes are characteristic genomic features that have no detectable homology to genes in any other species and represent an important attribute of genome evolution as sources of novel genetic functions. Here, we identified 445 genes specific to Populus trichocarpa. Of these, we performed deeper reconstruction of 13 orphan genes to provide evidence of de novo gene evolution. Populus and its sister genera Salix are particularly well suited for the study of orphan gene evolution because of the Salicoid whole-genome duplication event (WGD) which resulted in highly syntenic sister chromosomal segments across the Salicaceae. We leveraged this genomic feature to reconstruct de novo gene evolution from inter-genera, inter-species, and intra-genomic perspectives by comparing the syntenic regions within the P. trichocarpa reference, then P. deltoides, and finally Salix purpurea. Furthermore, we demonstrated that 86.5% of the putative orphan genes had evidence of transcription. Additionally, we also utilized the Populus genome-wide association mapping panel (GWAS), a collection of 1,084 undomesticated P. trichocarpa genotypes to further determine putative regulatory networks of orphan genes using expression quantitative trait loci (eQTL) mapping. Collectively, we provide novel insights into the processes of de novo gene evolution in the context of a long-lived eukaryote.