Project description:Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1,2,3,4. Despite the clinical evidence1,5,6,7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8,9,10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Project description:Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection1,2,3,4. Despite the clinical evidence1,5,6,7, the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits1,5,8,9,10. Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well as from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Project description:Infection with SARS-CoV-2 has highly variable clinical manifestations, ranging from asymptomatic infection through to life-threatening disease. Host whole blood transcriptomics can offer unique insights into the biological processes underpinning infection and disease, as well as severity. We performed whole blood RNA-Sequencing of individuals with varying degrees of COVID-19 severity. We used differential expression analysis and pathway enrichment analysis to explore how the blood transcriptome differs between individuals with mild, moderate, and severe COVID-19, performing pairwise comparisons between groups.
Project description:Severely-afflicted COVID-19 patients can exhibit disease manifestations representative of sepsis, including acute respiratory distress syndrome and multiple organ failure. We hypothesized that diagnostic tools used in managing all-cause sepsis, such as clinical criteria, biomarkers, and gene expression signatures, should extend to COVID-19 patients. Here we analyzed the whole blood transcriptome of 124 early (1-5 days post-hospital admission) and late (6-20 days post-admission) sampled patients with confirmed COVID-19 infections from hospitals in Quebec, Canada. Mechanisms associated with COVID-19 severity were identified between severity groups (ranging from mild disease to the requirement for mechanical ventilation and mortality), and established sepsis signatures were assessed for dysregulation. Specifically, gene expression signatures representing pathophysiological events, namely cellular reprogramming, organ dysfunction, and mortality, were significantly enriched and predictive of severity and lethality in COVID-19 patients. Mechanistic endotypes reflective of distinct sepsis aetiologies and therapeutic opportunities were also identified in subsets of patients, enabling prediction of potentially-effective repurposed drugs. The expression of sepsis gene expression signatures in severely-afflicted COVID-19 patients indicates that these patients should be classified as having severe sepsis. Accordingly, in severe COVID-19 patients, these signatures should be strongly considered for the mechanistic characterization, diagnosis, and guidance of treatment using repurposed drugs.
Project description:Primary objectives: The aim of the study is to investigate whether supplement of vitamin D may assist in increasing the immunity response to Covid-19 infection, in cancer patients with no or minimal symptoms due to virus and not requiring hospitalization at baseline.
Primary endpoints: Rate of hospitalization due to COVID-19 related pneumonia
Project description:Older age is one of the strongest risk factors for COVID-19 morbidity and mortality. Here, we sought to determine whether age-associated cellular senescence contributes to the severity of COVID-19 by studying the well-established golden hamster model of SARS-CoV-2-driven lung disease. We found that aged hamsters (22 months of age) accumulate senescent cells in the lungs and that the senolytic drug ABT-263, a B cell lymphoma-2 family inhibitor, depletes these cells at baseline and during a SARS-CoV-2 infection. Relative to young hamsters (2 months of age), aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Interestingly, early treatment with ABT-263 was associated with a significantly lower pulmonary viral load, an effect associated with lower expression of angiotensin converting enzyme 2, the receptor for SARS-CoV-2, and an amelioration of COVID-19-like lung disease in aged (but not young) animals. ABT-263 treatment of aged animals was also associated with lower pulmonary and systemic levels of senescence-associated secretory phenotype factors. Furthermore, early removal of senescent cells reduced the longer-term pulmonary inflammation. These data demonstrate the causative role of age-associated pre-existing senescent cells on the pathologic severity of experimental COVID-19. As several senolytics have recently moved into early-stage clinical trials, our present findings have clear clinical relevance.
Project description:Older age is one of the strongest risk factors for COVID-19 morbidity and mortality. Here, we sought to determine whether age-associated cellular senescence contributes to the severity of COVID-19 by studying the well-established golden hamster model of SARS-CoV-2-driven lung disease. We found that aged hamsters (22 months of age) accumulate senescent cells in the lungs and that the senolytic drug ABT-263, a B cell lymphoma-2 family inhibitor, depletes these cells at baseline and during a SARS-CoV-2 infection. Relative to young hamsters (2 months of age), aged hamsters had a greater viral load during the acute phase of infection and displayed higher levels of sequelae during the post-acute phase. Interestingly, early treatment with ABT-263 was associated with a significantly lower pulmonary viral load, an effect associated with lower expression of angiotensin converting enzyme 2, the receptor for SARS-CoV-2, and an amelioration of COVID-19-like lung disease in aged (but not young) animals. ABT-263 treatment of aged animals was also associated with lower pulmonary and systemic levels of senescence-associated secretory phenotype factors. Furthermore, early removal of senescent cells reduced the longer-term pulmonary inflammation. These data demonstrate the causative role of age-associated pre-existing senescent cells on the pathologic severity of experimental COVID-19. As several senolytics have recently moved into early-stage clinical trials, our present findings have clear clinical relevance.
Project description:Patients with oral preneoplastic lesion (OPL) have high risk of developing oral cancer. Although certain risk factors such as smoking status and histology are known, our ability to predict oral cancer risk remains poor. The study objective was to determine the value of gene expression profiling in predicting oral cancer development. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction. We developed a 29-transcript predictive model which showed marked improvement in terms of prediction accuracy (with 8% predicting error rate) over the models using previously known clinico-pathological risk factors. Based on the gene expression profile data, we also identified 2182 transcripts significantly associated with oral cancer risk associated genes (P-value<0.01, single variate Cox proportional hazards model). Functional pathway analysis revealed proteasome machinery, MYC, and ribosomes components as the top gene sets associated with oral cancer risk. In multiple independent datasets, the expression profiles of the genes can differentiate head and neck cancer from normal mucosa. Our results show that gene expression profiles may improve the prediction of oral cancer risk in OPL patients and the significant genes identified may serve as potential targets for oral cancer chemoprevention. Gene expression profile was measured in 86 of 162 OPL patients who were enrolled in a clinical chemoprevention trial that used the incidence of oral cancer development as a prespecified endpoint. The median follow-up time was 6.08 years and 35 of the 86 patients developed oral cancer over the course. Gene expression profiles were associated with oral cancer-free survival and used to develope multivariate predictive models for oral cancer prediction.
Project description:Post-acute sequelae of COVID-19 (PASC) represent an emerging global crisis. However, quantifiable risk-factors for PASC and their biological associations are poorly resolved. We executed a deep multi-omic, longitudinal investigation of 309 COVID-19 patients from initial diagnosis to convalescence (2-3 months later), integrated with clinical data, and patient-reported symptoms. We resolved four PASC-anticipating risk factors at the time of initial COVID-19 diagnosis: type 2 diabetes, SARS-CoV-2 RNAemia, Epstein-Barr virus viremia, and specific autoantibodies. In patients with gastrointestinal PASC, SARS-CoV-2-specific and CMV-specific CD8+ T cells exhibited unique dynamics during recovery from COVID-19. Analysis of symptom-associated immunological signatures revealed coordinated immunity polarization into four endotypes exhibiting divergent acute severity and PASC. We find that immunological associations between PASC factors diminish over time leading to distinct convalescent immune states. Detectability of most PASC factors at COVID-19 diagnosis emphasizes the importance of early disease measurements for understanding emergent chronic conditions and suggests PASC treatment strategies.