Project description:RNASeq of roots from two genotypes of Arabidopsis thaliana plants, Col-0 and myb36-2 grown axenically or with a 41 member bacterial Synthetic Community (SynCom) to explore the interaction between the root diffusion barriers and the root microbiome.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:Advances in DNA sequencing technologies has drastically changed our perception of the structure and complexity of the plant microbiome. By comparison, our ability to accurately identify the metabolically active fraction of soil microbiota and its specific functional role in augmenting plant health is relatively limited. Here, we combined our recently developed protein extraction method and an iterative bioinformatics pipeline to enable the capture and identification of extracellular proteins (metaexoproteomics) synthesised in the rhizosphere of Brassica spp. We first validated our method in the laboratory by successfully identifying proteins related to a host plant (Brassica rapa) and its bacterial inoculant, Pseudomonas putida BIRD-1. This identified numerous rhizosphere specific proteins linked to the acquisition of plant-derived nutrients in P. putida. Next, we analysed natural field-soil microbial communities associated with Brassica napus L. (oilseed rape). By combining metagenomics with metaexoproteomics, 1882 proteins were identified across bulk and rhizosphere samples. Meta-exoproteomics identified a clear shift (p<0.001) in the metabolically active fraction of the soil microbiota responding to the presence of B. napus roots that was not apparent in the composition of the total microbial community (metagenome). This metabolic shift was associated with the stimulation of rhizosphere-specialised bacteria, such as Gammaproteobacteria, Betaproteobacteria and Flavobacteriia and the upregulation of plant beneficial functions related to phosphorus and nitrogen mineralisation. Together, our metaproteomic assessment of the ‘active’ plant microbiome at the field-scale demonstrates the importance of moving past a genomic assessment of the plant microbiome in order to determine ecologically important plant-microbe interactions underpinning plant health.
Project description:The experiment was designed to test the interactions of Spartina alterniflora, its microbiome, and the interaction of the plant-microbe relationship with oil from the Deepwater Horizon oil spill (DWH). Total RNA was extracted from leaf and root microbiome of S. alterniflora in soils that were oiled in DWH oil spill with or without added oil, as well as those grown in unoiled soil with or without added oil. The work in its entirety characterizes the transport, fate and catabolic activities of bacterial communities in petroleum-polluted soils and within plant tissues.
Project description:The association between soil microbes and plant roots is present in all natural and agricultural environments. Microbes can be beneficial, pathogenic, or neutral to the host plant development and adaptation to abiotic or biotic stresses. Progress in investigating the functions and changes in microbial communities in diverse environments have been rapidly developing in recent years, but the changes in root function is still largely understudied. The aim of this study was to determine how soil bacteria influence maize root transcription and microRNAs (miRNAs) populations in a controlled inoculation of known microbes over a defined time course. At each time point after inoculation of the maize inbred line B73 with ten bacterial isolates, DNA and RNA were isolated from roots. The V4 region of the 16S rRNA gene was amplified from the DNA and sequenced with the Illumina MiSeq platform. Amplicon sequencing of the 16S rRNA gene indicated that most of the microbes successfully colonized maize roots. The colonization was dynamic over time and varied with the specific bacterial isolate. Small RNA sequencing and mRNA-Seq was done to capture changes in the root transcriptome from 0.5 to 480 hours after inoculation. The transcriptome and small RNA analyses revealed epigenetic and transcriptional changes in roots due to the microbial inoculation. This research provides the foundational data needed to understand how plant roots interact with bacterial partners and will be used to develop predictive models for root response to bacteria.
Project description:Plants are naturally associated with diverse microbial communities, which play significant roles in plant performance, such as growth promotion or fending off pathogens. The roots of Alkanna tinctoria L. are rich in naphthoquinones, particularly the medicinally used chiral compounds alkannin, shikonin and their derivatives. Former studies already have shown that microorganisms may modulate plant metabolism. To further investigate the potential interaction between A. tinctoria and associated microorganisms we performed a greenhouse experiment, in which A. tinctoria plants were grown in the presence of three distinct soil microbiomes. At four defined plant developmental stages we made an in-depth assessment of bacterial and fungal root-associated microbiomes as well as all primary and secondary metabolites. Our results showed that the plant developmental stage was the most important driver influencing the plant metabolite content, revealing peak contents of alkannin/shikonin at the fruiting stage. In contrast, the soil microbiome had the biggest impact on the plant root microbiome. Correlation analyses performed on the measured metabolite content and the abundance of individual bacterial and fungal taxa suggested a dynamic, at times positive or negative relationship between root-associated microorganisms and root metabolism. In particular, the bacterial Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium group and the fungal species Penicillium jensenii were found to be positively correlated with higher content of alkannins.
Project description:The rhizosphere is a small region surrounding plant roots that is enriched in biochemicals from root exudates and populated with fungi, nematode, and bacteria. Interaction of rhizosphere organisms with plants is mainly promoted by exudates from the roots. Root exudates contain biochemicals that come from primary and secondary metabolisms of plants. These biochemicals attract microbes, which influence plant nutrition. The rhizosphere bacteria (microbiome) are vital to plant nutrient uptake and influence biotic and abiotic stress and pathogenesis. Pseudomonas is a genus of gammaproteobacteria known for its ubiquitous presence in natural habitats and its striking ecological, metabolic, and biochemical diversity. Within the genus, members of the Pseudomonas fluorescens group are common inhabitants of soil and plant surfaces, and certain strains function in the biological control of plant disease, protecting plants from infection by soilborne and aerial plant pathogens. The soil bacterium Pseudomonas protegens Pf-5 (also known as Pseudomonas fluorescens Pf-5) is a well-characterized biological strain, which is distinguished by its prolific production of the secondary metabolite, pyoverdine. Knowledge of the distribution of P. fluorescens secretory activity around plant roots is very important for understanding the interaction between P. fluorescens and plants and can be achieved by real time tracking of pyoverdine. To achieve the capability of real-time tracking in soil, we have used a structure-switching SELEX strategy to select high affinity ssDNA aptamers with specificity for pyoverdine over other siderophores. Two DNA aptamers were isolated, and their features compared. The aptamers were applied to a nanoporous aluminum oxide biosensor and demonstrated to successfully detect PYO-Pf5. This sensor provides a future opportunity to track the locations around plant roots of P. protegens and to monitor PYO-Pf5 production and movement through the soil.