Project description:We used two wheat genotypes, the susceptible wheat cultivar ‘8866 ’(S) and its near isogenic line with single powdery mildew resistance gene ‘pm30’ (R), to investigate gene expression changes in response to powdery mildew infection by using Wheat Genome Array
Project description:We used two wheat genotypes, the susceptible wheat cultivar ‘8866 ’(S) and its near isogenic line with single powdery mildew resistance gene ‘pm30’ (R), to investigate gene expression changes in response to powdery mildew infection by using Wheat Genome Array wheat young leveas of near isogenic lines before or 12 hours after powdery mildew infection were selected for RNA extraction and hybridization on Affymetrix microarrays.The leaf samples were harvested from three independent biological replicates, and the leaves without inoculation were regarded as control.
Project description:Powdery mildew, caused by the fungus Blumeria graminis (DC) Speer, is one of the most important foliar diseases of cereals worldwide. It is an obligate biotrophic parasite, colonising leaf epidermal cells to obtain nutrients from the plant cells without killing them. Syringolin A (sylA), a circular peptide secreted by the phytopathogenic bacterium Pseudomonas syringae pv. syringae, triggers a hypersensitive cell death reaction (HR) at infection sites when sprayed onto powdery mildew infected wheat which essentially eradicates the fungus. The rational was to identify genes whose expression was specifically regulated during HR, i.e. genes that might be involved in the switch of compatibility to incompatibility.<br>Powdery mildew-infected or uninfected plants were treated with syringolin two days after infection and plant material for RNA extraction was collected at 0.5, 1, 2, 4, 8, 12 hours after treatment (hat), resulting in an early (2 and 4 hat) and late pool (8 and 12 hat). Plant material that was uninfected prior to syringolin treatment was collected 8 and 12 hat (late pool of uninfected plant material), and 1 hat, respectively.
Project description:To test whether non-coding RNAs play roles in regulating response to powdery mildew infection and heat stress in wheat, by using Solexa high-throughput sequencing and computational analysis and experimental approach we cloned the small RNAs and identified 125 putative long npcRNAs from wheat leaves infected by preponderant physiological strain Erysiphe graminis f. sp. tritici (Egt) or by heat stress treatment. Among long non-coding RNAs, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP) 7S RNA variants, and three were characterized as U3 snoRNAs. Wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress.
Project description:LC-MS/MS data were collected from uninfected and parallel Golovinomyces orontii MGH1- infected Arabidopsis thaliana leaf tissue (leaves 7-9) at 12 days post inoculation to understand the manipulation of host lipid metabolism by the powdery mildew.