Project description:We report the application of single cell RNA sequencing technology for high-throughput profiling of nasal microbiome Staphylococcus epidermidis in human nasal epithelial cells.
Project description:Chronic rhinitis (CR) is a frustrating clinical syndrome in dogs and our understanding of the disease pathogenesis in is limited. Increasingly, host-microbe interactions are considered key drivers of clinical disease in sites of persistent mucosal inflammation such as the nasal and oral cavities. Therefore, we applied next generation sequencing tools to interrogate abnormalities present in the nose of dogs with CR and compared immune and microbiome profiles to those of healthy dogs. Host nasal cell transcriptomes were evaluated by RNA sequencing, while microbial communities were assessed by 16S rRNA sequencing. Correlation analysis was then used to identify significant interactions between nasal cell transcriptomes and the nasal microbiome and how these interactions were altered in animals with CR. Notably, we observed significant downregulation of multiple genes associated with ciliary function in dogs with CR, suggesting a previously undetected role for ciliary dysfunction in this syndrome. We also found significant upregulation of immune genes related to the TNF-a and interferon pathways. The nasal microbiome was also significantly altered in CR dogs, with overrepresentation of several potential pathobionts. Interactome analysis revealed significant correlations between bacteria in the genus Porphyromonas and the upregulated host inflammatory responses in dogs with CR, as well as defective ciliary function which was correlated with Streptococcus abundance. These findings provide new insights into host-microbe interactions in a canine model of CR and indicate the presence of potentially causal relationships between nasal pathobionts and the development of nasal inflammation and ciliary dysfunction.
Project description:“Dysbiosis" of the maternal gut microbiome, in response to environmental challenges such as infection, altered diet and stress during pregnancy, has been increasingly associated with abnormalities in offspring brain function and behavior. However, whether the maternal gut microbiome regulates neurodevelopment in the absence of environmental challenge remains unclear. In addition, whether the maternal microbiome exerts such influences during critical periods of embryonic brain development is poorly understood. Here we investigate how depletion, and selective reconstitution, of the maternal gut microbiome influences fetal neurodevelopment in mice. Embryos from antibiotic-treated and germ-free dams exhibit widespread transcriptomic alterations in the fetal brain relative to conventionally-colonized controls, with reduced expression of several genes involved in axonogenesis. In addition, embryos from microbiome-depleted mothers exhibit deficient thalamocortical axons and impaired thalamic axon outgrowth in response to cell-extrinsic guidance cues and growth factors. Consistent with the importance of fetal thalamocortical axonogenesis for shaping neural circuits for sensory processing, restricted depletion of the maternal microbiome from pre-conception through mid-gestation yields offspring that exhibit tactile hyposensitivity in select sensorimotor behavioral tasks. Gnotobiotic colonization of antibiotic-treated dams with a limited consortium of spore-forming bacteria indigenous to the gut microbiome prevents abnormalities in fetal brain gene expression, fetal thalamocortical axonogenesis and adult tactile sensory behavior associated with maternal microbiome depletion. Metabolomic profiling reveals that the maternal microbiota regulates levels of numerous small molecules in the maternal serum as well as the brains of fetal offspring. Select microbiota-dependent metabolites – trimethylamine N-oxide, 5-aminovalerate, imidazole propionate, and hippurate – sufficiently promote axon outgrowth from fetal thalamic explants. Moreover, maternal supplementation with the metabolites during early gestation abrogates deficiencies in fetal thalamocortical axons and prevents abnormalities in tactile sensory behavior in offspring from microbiome-depleted dams. Altogether, these findings reveal that the maternal gut microbiome promotes fetal thalamocortical axonogenesis and select tactile sensory behaviors in mice, likely by signaling of microbially modulated metabolites to neurons in the developing brain.
Project description:Maternal diabetes is associated with a wide range of fetal and neonatal adverse effects including pulmonary disturbances. To investigate the effects of maternal diabetes on neonatal lung gene expression profile, we performed microarray analysis on the lungs of 14-day-old rats born to diabetic dam. Keywords: disease state analysis Four neonatal lungs exposed to maternal diabetes and four control lungs were analyzed.
Project description:The microorganisms colonizing the gastrointestinal tract of animals, collectively referred to as the gut microbiome, affect numerous host behaviors dependent on the central nervous system (CNS). Studies comparing germ-free mice to normally colonized mice have demonstrated influences of the microbiome on anxiety-related behaviors, voluntary activity, and gene expression in the CNS. Additionally, there is epidemiologic evidence supporting an intergenerational influence of the maternal microbiome on neurodevelopment of offspring and behavior later in life. There is limited experimental evidence however directly linking the maternal microbiome to long-term neurodevelopmental outcomes, or knowledge regarding mechanisms responsible for such effects. Here we show that that the maternal microbiome has a dominant influence on several offspring phenotypes including anxiety-related behavior, voluntary activity, and body weight. Adverse outcomes in offspring were associated with features of the maternal microbiome including bile salt hydrolase (Bsh) expression, abundance of certain bile acids, and hepatic expression of S1pr2. In cross-foster experiments, offspring resembled their birth dam phenotypically, despite faithful colonization in the postnatal period with the surrogate dam microbiome. Genome-wide methylation analysis of hippocampal DNA identified microbiome-associated differences in methylation of 196 loci in total, 176 of which were imprinted by the maternal microbiome. Further, single-cell transcriptional analysis revealed accompanying differences in expression of several differentially methylated genes within certain hippocampal cell clusters, and vascular expression of genes associated with bile acid transport. Inferred cell-to-cell communication in the hippocampus based on coordinated ligand-receptor expression revealed differences in expression of neuropeptides associated with satiety. Collectively, these data provide proof-of-principle that the maternal gut microbiome has a dominant influence on the neurodevelopment underlying certain offspring behaviors and activities, and selectively affects genome methylation and gene expression in the offspring CNS in conjunction with that neurodevelopment.
Project description:Disruption of circadian rhythm during pregnancy produced adverse health outcomes in offspring. However, the role of maternal circadian rhythms in infants’ immunity and their susceptibility to inflammation remains poorly understood. Here we reported that disruption of circadian rhythms in pregnant mice profoundly aggravated the severity of neonatal inflammatory disorders, including necrotizing enterocolitis (NEC) and sepsis. The diminished production of maternal-derived docosahexaenoic acid (DHA) and the impaired immunosuppressive function of myeloid-derived suppressor cells (MDSCs) in neonates played a dominant role in this process. Mechanistically, DHA enhanced the immunosuppressive function of neonatal MDSCs viaPPARγ mediated mitochondrial oxidative phosphorylation. Transfer of MDSCs or perinatal supplementation of DHA relieved neonatal inflammation induced by maternal rhythms disruption. These observations revealed an important role of maternal circadian rhythms in the control of neonatal inflammation via metabolic reprograming of myeloid cells.
Project description:Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Despite posing substantial health risks, airway immune responses in early life remain largely unexplored. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular networks for influenza A and respiratory syncytial virus, emphasizing highly relevant virus-specific pathways. This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers novel insights that should enable a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.