Project description:Halomonas titanicae strain BH1 is a heterotrophic, aerobic marine bacterium which was isolated from rusticles of the RMS Titanic wreck. Here we report the draft genome sequence of this halophilic gammaproteobacterium.
Project description:We isolate the cultivable microbiome of a diatom and show that different bacteria have commensal, antagonistic, or synergistic effects on the diatom. One synergistic bacterium enhances growth of the diatom by production of auxin, a phytohormone. The diatom and its synergistic bacterium appear to use auxin and tryptophan as signaling molecules that drive nutrient exchange. Detection of auxin molecules and biosynthesis gene transcripts in the Pacific Ocean suggests that these interactions are widespread in marine ecosystems.
Project description:Halomonas bacteria are ubiquitous in global marine environments, however, their sulfur-oxidizing abilities and survival adaptations in hydrothermal environments are not well understood. In this study, we characterized the sulfur oxidation ability and metabolic mechanisms of Halomonas titanicae SOB56, which was isolated from the sediment of the Tangyin hydrothermal field in the Southern Okinawa Trough. Physiological characterizations showed that it is a heterotrophic sulfur-oxidizing bacterium that can oxidize thiosulfate to tetrathionate, with the Na2S2O3 degradation reaching 94.86%. Two potential thiosulfate dehydrogenase-related genes, tsdA and tsdB, were identified as encoding key catalytic enzymes, and their expression levels in strain SOB56 were significantly upregulated. Nine of fifteen examined Halomonas genomes possess TsdA- and TsdB-homologous proteins, whose amino acid sequences have two typical Cys-X2-Cys-His heme-binding regions. Moreover, the thiosulfate oxidation process in H. titanicae SOB56 might be regulated by quorum sensing, and autoinducer-2 synthesis protein LuxS was identified in its genome. Regarding the mechanisms underlying adaptation to hydrothermal environment, strain SOB56 was capable of forming biofilms and producing EPS. In addition, genes related to complete flagellum assembly system, various signal transduction histidine kinases, heavy metal transporters, anaerobic respiration, and variable osmotic stress regulation were also identified. Our results shed light on the potential functions of heterotrophic Halomonas bacteria in hydrothermal sulfur cycle and revealed possible adaptations for living at deep-sea hydrothermal fields by H. titanicae SOB56.
Project description:Microorganisms have successfully predominated deep-sea ecosystems, while we know little about their adaptation strategy to multiple environmental stresses therein, including high hydrostatic pressure (HHP). Here, we focused on the genus Halomonas, one of the most widely distributed halophilic bacterial genera in marine ecosystems and isolated a piezophilic strain Halomonas titanicae ANRCS81 from Antarctic deep-sea sediment. The strain grew under a broad range of temperatures (2 to 45°C), pressures (0.1 to 55 MPa), salinities (NaCl, 0.5 to 17.5%, wt/vol), and chaotropic agent (Mg2+, 0 to 0.9 M) with either oxygen or nitrate as an electron acceptor. Genome annotation revealed that strain ANRCS81 expressed potential antioxidant genes/proteins and possessed versatile energy generation pathways. Based on the transcriptomic analysis, when the strain was incubated at 40 MPa, genes related to antioxidant defenses, anaerobic respiration, and fermentation were upregulated, indicating that HHP induced intracellular oxidative stress. Under HHP, superoxide dismutase (SOD) activity increased, glucose consumption increased with less CO2 generation, and nitrate/nitrite consumption increased with more ammonium generation. The cellular response to HHP represents the common adaptation developed by Halomonas to inhabit and drive geochemical cycling in deep-sea environments. IMPORTANCE Microbial growth and metabolic responses to environmental changes are core aspects of adaptation strategies developed during evolution. In particular, high hydrostatic pressure (HHP) is the most common but least examined environmental factor driving microbial adaptation in the deep sea. According to recent studies, microorganisms developed a common adaptation strategy to multiple stresses, including HHP, with antioxidant defenses and energy regulation as key components, but experimental data are lacking. Meanwhile, cellular SOD activity is elevated under HHP. The significance of this research lies in identifying the HHP adaptation strategy of a Halomonas strain at the genomic, transcriptomic, and metabolic activity levels, which will allow researchers to bridge environmental factors with the ecological function of marine microorganisms.
Project description:The draft genome sequence of a moderately halophilic bacterium, Halomonas titanicae strain TAT1, isolated from production water of the Romashkinskoe oilfield (Russia) is presented. The genome is annotated for elucidation of the metabolic pathways involved in hydrocarbon degradation and nitrate reduction in petroleum-contaminated hypersaline environments.
Project description:Background: Ocean temperatures are projected to increase over the coming century, with dramatic consequences for the marine biosphere. Diatoms are important contributors to marine primary production and the ocean carbon cycle, yet the molecular mechanisms that regulate their acclimation and adaptation to temperature are poorly understood. Method: Here we use a transcriptomic approach to identify the molecular mechanisms associated with temperature acclimation and adaptation in closely related colder- and warmer-adapted diatom species. Results: We find contrasting patterns of differential expression at sub- and supra-optimal temperatures across the two species, which may be due to adaptive changes in baseline expression. Frontloaded and divested pathways indicate protein processing machinery, membrane structure, and the balance between temperature-independent photosynthesis and temperature-dependent metabolism are key elements of adaptation to temperature changes. Conclusions: Our findings suggest that transcriptional frontloading and divestment may provide a framework to interpret diatom acclimation and adaptation to temperature and success under future warming.
Project description:We performed RNA-sequencing experiments to examine the differential regulation of genes in the genome of the Southern Ocean diatom Fragilariopsis cylindrus including diverged alleles. RNA-seq was performed on three replicate samples for each experimental condition. Phytoplankton cells were grown under six different experimental conditions including (1) optimal growth, (2) freezing temperatures, (3) elevated temperature, (4) elevated carbon dioxide concentrations, (5) low iron concentrations and (6) prolonged darkness. Total RNA was extracted using a guanidinium thiocyanate-phenol-chloroform extraction protocol, followed by DNase I treatment and RNA purification (Quiagen). First strand cDNA synthesis was performed using random hexamers. Library preparation was performed using the RNA-seq Sample Prep Kit (Illumina) and sequencing was conducted according to the TruSeq RNA sequencing protocol (Illumina) All samples were sequenced together in one flowcell on one lane.
Project description:Rising atmospheric CO2 concentrations are leading to ocean acidification, altering the inorganic carbon buffer system with consequences for marine organisms. Here we applied RNA-seq and iTRAQ quantification to investigate the potential impacts of ocean acidification on the temperate coastal marine diatom Skeletonema marinoi.