Project description:Purpose: TThe Coiled coil domain containing (CCDC) protein is an egg that is closely related to malignant tumors. Methods:Breast cancer cells MDA-MB-231(NC), MDA-MB-231(shCCDC12)were deeply sequenced by Illumina sequencing platform (HISEQ2500) in triplices. Genes with adjusted p values < 0.05 and |foldChange| > 2 were defined as differential expression Genes (DEGs) and enriched with GO and KEGG. Several essential genes were validated by qRT-PCR using QuantStudio 5 (Thermo Fisher) and SYBR Green assays. The White Family. Studies have shown that CCDC protein is abnormally expressed in malignant tumors and changes cell proliferation cycle by regulating cell transcription factors Stage, promote the invasion and metastasis of malignant tumor cells. How does CCDC12 as a shear gene affect the biology of breast cancer Scientific activity remains to be further studied. Results: To verify the biological properties of CCDC12 in breast cancer, we studied breast cancer MDA-MB-231 knocked down the expression of CCDC12 in the cell line, and previous studies showed that TCGA and CPTAC database scores The mRNA and protein expression levels of CCDC12 gene were significantly up-regulated in normal breast cancer tissues compared with tumor tissues. Knocking down the expression level of CCDC12 in MDA-MB-231 cells can significantly inhibit cell growth, proliferation and migration. In tumor formation experiments in nude mice, low expression of CCDC12 can inhibit tumor growth. Knock down CCDC12 on MDA-MB-231 Splicing event analysis was performed by cell transcriptome sequencing, and differential analysis found that CCDC12 expression was differentially induced in breast cancer cells The RNA binding motif protein 47 (RBM47) Skipped exon, causing RMB47 to open The structure of the reading frame changes, altering gene function. Conclusions:This study confirmed that CCDC12 regulates the invasion and metastasis of breast cancer cells by regulating the variable shear of RBM47, inducing cell cycle arrest and promoting cell apoptosis. The results of RNA-Seq were consistent with our in vitro and in vivo experiments.
Project description:Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we have identified RNA binding motif protein 47 (RBM47) as a candidate suppressor of breast cancer metastasis. RBM47 inhibited breast cancer progression in experimental models. Transcriptome-wide analysis of RBM47 localization by HITS-CLIP revealed widespread binding to mRNAs, preferentially at the 3' UTRs. RBM47 altered the abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1 (DKK1), mediate tumor suppressive effects downstream of RBM47. This work identifies RBM47 as a suppressor of breast cancer progression and highlights the potential of global RNA modulatory events as a source of metastasis-promoting phenotypic traits. Cancer cells transduced with doxycycline-inducible wildtype RBM47 or the RBM47-I281fs mutant, treated with increasing concentrations of doxycycline.
Project description:Through integrative analysis of clinical breast cancer gene expression datasets, cell line models of breast cancer progression, and mutation data from cancer genome resequencing studies, we have identified RNA binding motif protein 47 (RBM47) as a candidate suppressor of breast cancer metastasis. RBM47 inhibited breast cancer progression in experimental models. Transcriptome-wide analysis of RBM47 localization by HITS-CLIP revealed widespread binding to mRNAs, preferentially at the 3' UTRs. RBM47 altered the abundance of a subset of its target mRNAs. Some of the mRNAs stabilized by RBM47, as exemplified by dickkopf WNT signaling pathway inhibitor 1 (DKK1), mediate tumor suppressive effects downstream of RBM47. This work identifies RBM47 as a suppressor of breast cancer progression and highlights the potential of global RNA modulatory events as a source of metastasis-promoting phenotypic traits.
Project description:d9 and d12 Mks were either cultured statically or subjected to shear flow for 30 min; at d9, half the Mks were placed back in culture for 30 min (60 min time point) Megakaryocytes (Mks) are exposed to shear flow as they migrate from the bone marrow hematopoietic compartment into circulation thus releasing platelets and pro/preplatelets directly into the blood stream. Shear forces have been now established as promoting Mk maturation and platelet biogenesis. In order to understand the underlying mechanisms that modulate the response of Mks to shear forces, we carried out transcriptional analysis on immature and mature stem cell-derived Mks that were exposed to physiologically-relevant shear (2.5 dyn/cm2). In immature (d9) Mks, shear exposure upregulated genes related to growth and Mk maturation, while in mature (d12) Mks, it upregulated genes involved in apoptosis and intracellular transport. Following shear-flow exposure, 6 AP-1 transcripts (ATF4, JUNB, JUN, FOSB, FOS, and JUND) were upregulated at d9 and two AP-1 proteins (JunD and c-Fos) were upregulated both at d9 and d12. Our data show that MAPK signaling is linked to both the shear-stress response and AP-1 upregulation. JNK phosphorylation increased significantly following shear stimulation, while JNK inhibition reduced shear-induced JunD protein expression. Although p38 phosphorylation did not increase following shear flow, its inhibition reduced shear-induced JunD and c-Fos protein expression. JNK inhibition reduced fibrinogen binding of d9 and d12 platelet-like particle s (PLPs) and P-selectin expression at d12 PLPs, while p38 inhibition reduced fibrinogen binding of d12 PLPs. Here we show that mechanotransduction of shear forces in Mks results in JNK activation, AP-1 upregulation, and downstream transcriptional changes that promote maturation of immature Mks and platelet biogenesis in mature Mks. Two- and Three-condition experiment (flow vs. static culture condition, d9 vs. d12, and 30 min vs. 60 min at d9); Biological replicates: 3; Technical replicates: 1 (dye-swap)
Project description:d9 and d12 Mks were either cultured statically or subjected to shear flow for 30 min; at d9, half the Mks were placed back in culture for 30 min (60 min time point) Megakaryocytes (Mks) are exposed to shear flow as they migrate from the bone marrow hematopoietic compartment into circulation thus releasing platelets and pro/preplatelets directly into the blood stream. Shear forces have been now established as promoting Mk maturation and platelet biogenesis. In order to understand the underlying mechanisms that modulate the response of Mks to shear forces, we carried out transcriptional analysis on immature and mature stem cell-derived Mks that were exposed to physiologically-relevant shear (2.5 dyn/cm2). In immature (d9) Mks, shear exposure upregulated genes related to growth and Mk maturation, while in mature (d12) Mks, it upregulated genes involved in apoptosis and intracellular transport. Following shear-flow exposure, 6 AP-1 transcripts (ATF4, JUNB, JUN, FOSB, FOS, and JUND) were upregulated at d9 and two AP-1 proteins (JunD and c-Fos) were upregulated both at d9 and d12. Our data show that MAPK signaling is linked to both the shear-stress response and AP-1 upregulation. JNK phosphorylation increased significantly following shear stimulation, while JNK inhibition reduced shear-induced JunD protein expression. Although p38 phosphorylation did not increase following shear flow, its inhibition reduced shear-induced JunD and c-Fos protein expression. JNK inhibition reduced fibrinogen binding of d9 and d12 platelet-like particle s (PLPs) and P-selectin expression at d12 PLPs, while p38 inhibition reduced fibrinogen binding of d12 PLPs. Here we show that mechanotransduction of shear forces in Mks results in JNK activation, AP-1 upregulation, and downstream transcriptional changes that promote maturation of immature Mks and platelet biogenesis in mature Mks.
Project description:We identified RNA binding motif protein 47 (RBM47) as a target gene of transforming growth factor (TGF)-beta in mammary gland epithelial cells (NMuMG cells) that have undergone the epithelial-to-mesenchymal transition (EMT). TGF-beta repressed RBM47 expression in NMuMG cells and lung cancer cell lines. Expression of RBM47 correlated with good prognosis in patients with lung, breast, and gastric cancer. RBM47 suppressed the expression of cell metabolism-related genes, which were the direct targets of nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2). RBM47 bound to KEAP1 and Cullin3 mRNAs, and knockdown of RBM47 inhibited their protein expression, which led to enhanced binding of Nrf2 to target genomic regions. Knockdown of RBM47 also enhanced the expression of some Nrf2 activators, p21/CDKN1A and MafK induced by TGF-beta. Both mitochondrial respiration rates and the side population cells in lung cancer cells increased in the absence of RBM47. Our findings, together with the enhanced tumor formation and metastasis of xenografted mice by knockdown of the RBM47 expression, suggested tumor suppressive roles for RBM47 through the inhibition of Nrf2 activity. Effect of shRNA for RBM47 and TGF-beta on gene expression was evaluated by RNA-seq and RBM47-bound RNAs were identified by RIP-seq in A549 cells.
Project description:Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress frequency (2 Hz) was then applied. The transcriptomics studies using microarray identified genes that were sensitive to the elevated shear frequency. keywords: adaptation, shear stress, frequency, microarray, gene expression Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress magnitude (2 Hz) was then applied. Gene expression at multiple time points was measured using microarray.
Project description:Porcine endothelial cells were preconditioned by a basal level shear stress of 15 ± 15 dynes/cm2 at 1 Hz for 24 hours, and an acute increase in shear stress frequency (2 Hz) was then applied. The transcriptomics studies using microarray identified genes that were sensitive to the elevated shear frequency. keywords: adaptation, shear stress, frequency, microarray, gene expression
Project description:We identified RNA binding motif protein 47 (RBM47) as a target gene of transforming growth factor (TGF)-beta in mammary gland epithelial cells (NMuMG cells) that have undergone the epithelial-to-mesenchymal transition (EMT). TGF-beta repressed RBM47 expression in NMuMG cells and lung cancer cell lines. Expression of RBM47 correlated with good prognosis in patients with lung, breast, and gastric cancer. RBM47 suppressed the expression of cell metabolism-related genes, which were the direct targets of nuclear factor erythroid 2-related factor 2 (Nrf2; also known as NFE2L2). RBM47 bound to KEAP1 and Cullin3 mRNAs, and knockdown of RBM47 inhibited their protein expression, which led to enhanced binding of Nrf2 to target genomic regions. Knockdown of RBM47 also enhanced the expression of some Nrf2 activators, p21/CDKN1A and MafK induced by TGF-beta. Both mitochondrial respiration rates and the side population cells in lung cancer cells increased in the absence of RBM47. Our findings, together with the enhanced tumor formation and metastasis of xenografted mice by knockdown of the RBM47 expression, suggested tumor suppressive roles for RBM47 through the inhibition of Nrf2 activity.