Project description:GNPS-<This study determined the metabolites that allow monitoring of tea quality of oolong tea, not only the formation during the process, but also to their conservation and provides a novel strategy for data reduction in studies on metabolic marker discovery.
Project description:White tea is considered the least processed form of tea and is reported to have a series of potent bioactivities, such as antioxidant, anti-inflammatory, anti-mutagenic, and anti-cancer activities. However, the chemical composition of white tea and the dynamic changes of the metabolites during the manufacturing process are far from clear. In this study, we applied a nontargeted metabolomics approach based on ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to comprehensively profile the characteristic metabolites of white tea. There were significant differences in the content of amino acids, catechins, dimeric catechins, flavonol and flavone glycosides, and aroma precursors in white tea compared with green and black teas that were manufactured from the same fresh tea leaves. Furthermore, the dynamic changes of the metabolites in the tea samples with various withering durations of 0, 4, 8, 12, 16, 20, 24, 28, and 36 h were also profiled. To the best of our knowledge, this study offers the most comprehensive characterization of the metabolites and their changes in white tea.
Project description:Recently, intensive global climate change has become a major factor impacting plant survival during the winter. Freezing cold temperatures during the winter and abnormal temperature fluctuations during the winter and early spring are the most harmful ambient factors threatening tea plant winter survival and currently cause marked economic losses in tea production. In this study, by simulating natural climate change, we established cold acclimation (CA) and rapid cold stress (after CA) conditions to comprehensively investigate the transcriptome changes involved in CA and rapid cold stress. Electrolyte leakage (EL) rate and expression profile clustering analyses confirmed that the experimental design was valid. Comparative transcription analysis identified many differentially expressed genes (DEGs) involved in both processes. Time course and pathway enrichment analyses further revealed the physiological changes that occur during the initial period of CA and the cell wall changes that occur throughout the entire CA process; these changes play crucial roles in increasing freezing tolerance during this process. Compared with CA, different cold response mechanisms were rapidly activated under cold stress; however, the subsequent accumulation of reactive oxygen species, which affect multiple aspects, caused by freezing cold could be the harshest factor impairing tea leaves. Moreover, we investigated 60 DEGs shared by both processes and highlighted the importance of KCSs, HXXXD-type acyl-transferase family proteins, NAC080, SWEETs and ENOs in the responses to various cold conditions. These results greatly improve our knowledge of cold response mechanisms in tea plants and provide meaningful information for functional studies investigating cold tolerance-related genes.
Project description:The RNA-Seq was used to analyze the expression profiling of genes in different ablescent stages of 'Anji Baicha' Examination of three tea leaf samples in yellow stage, white stage and green stage
Project description:Using genetic mouse models, high-throughput sequencing, transcriptome-wide m1A profiling and ribosome profiling, we find: (1) Translation is the most active process of these genetic information processing in early T cell activation. (2) T cells upregulate tRNA-m1A58 “writer” proteins TRMT61A and TRMT6 to install m1A58 modification to a specific subset of early expressed tRNAs during the early stage of activation. (3) m1A58 modifications in tRNA support rapid and adequate synthesis of MYC and other key functional proteins, guide the exit of naïve T cells from quiescence state into a proliferative state, and promote rapid T cell expansion after activation.
Project description:Early neuronal development is a well-coordinated process in which neuronal stem cells differentiate into polarized neurons. This process has been well studied in classical non-human model systems, but to what extent this is recapitulated in human neurons remains unclear. To study neuronal polarization in human neurons, we cultured human iPSC-derived neurons, characterized early developmental stages, measured electrophysiological responses, and systematically profiled transcriptomic and proteomic dynamics during these steps. We found extensive remodeling of the neuron transcriptome and proteome, with altered mRNA expression of ~1,100 genes and different expression profiles of ~1,500 proteins during neuronal differentiation and polarization. We also identified a distinct stage in axon development marked by an increase in microtubule remodeling and apparent relocation of the axon initial segment from the distal to proximal axon. Our comprehensive characterization and quantitative map of transcriptome and proteome dynamics provides a solid framework for studying polarization in human neurons.