Project description:Multiple Myeloma primary myeloma cells of 131 patients, 10 human myeloma cell lines, bone marrow stromal cells of 5 myeloma patients, bone marrow CD3 cells of 5 myeloma patients, bone marrow CD14 cells of 5 myeloma patients, bone marrow CD15 cells of 5 myeloma patients, in vitro generated osteoclastic cells of 7 myeloma patients, 7 normal plasmablasts and 6 normal memory B cells.
Project description:<h4><strong>BACKGROUND:</strong> Multiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.</h4><h4><strong>METHODS:</strong> Here, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.</h4><h4><strong>RESULTS:</strong> A decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the 'low-risk' ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.</h4><h4><strong>CONCLUSIONS & GENERAL SIGNIFICANCE: </strong>In conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.</h4>
Project description:In multiple myeloma (MM), endothelial progenitor cells (EPCs) regulate tumor angiogenesis and disease progression. They share a common bone marrow microenvironment with myeloma tumor cells. CD138+ tumor plasma cells from 12 newly diagnosed patients with advanced MM were examined for genomic instability by RNA microarrays to assess changes in gene expression. Tumor cells were derived from single-cell suspensions of bone marrow (BM) aspirates from newly diagnosed MM patients, and RNA was extracted for microarray hybridization.
Project description:Bone marrow monocytes are primarily committed to osteoclast formation. It is, however, unknown whether potential primary alterations are specifically present in bone marrow monocytes from patients with multiple myeloma, smoldering myeloma or monoclonal gammopathy of undetermined significance. We analyzed the immunophenotypic and transcriptional profiles of bone marrow CD14+ monocytes in a cohort of patients with different types of monoclonal gammopathies to identify alterations involved in myeloma-enhanced osteoclastogenesis. The number of bone marrow CD14+CD16+ cells was higher in patients with active myeloma than in those with smoldering myeloma or monoclonal gammopathy of undetermined significance. Interestingly, sorted bone marrow CD14+CD16+ cells from myeloma patients were more pro-osteoclastogenic than CD14+CD16-cells in cultures ex vivo Moreover, transcriptional analysis demonstrated that bone marrow CD14+ cells from patients with multiple myeloma (but neither monoclonal gammopathy of undetermined significance nor smoldering myeloma) significantly upregulated genes involved in osteoclast formation, including IL21RIL21R mRNA over-expression by bone marrow CD14+ cells was independent of the presence of interleukin-21. Consistently, interleukin-21 production by T cells as well as levels of interleukin-21 in the bone marrow were not significantly different among monoclonal gammopathies. Thereafter, we showed that IL21R over-expression in CD14+ cells increased osteoclast formation. Consistently, interleukin-21 receptor signaling inhibition by Janex 1 suppressed osteoclast differentiation from bone marrow CD14+ cells of myeloma patients. Our results indicate that bone marrow monocytes from multiple myeloma patients show distinct features compared to those from patients with indolent monoclonal gammopathies, supporting the role of IL21R over-expression by bone marrow CD14+ cells in enhanced osteoclast formation.
Project description:Gene expression profiling of CD138 purified bone marrow plasma cells of normal donnors, previoulsy untreated MGUS and multiple myeloma patients, and myeloma cell lines