Project description:Volatiles of certain rhizobacteria can cause growth inhibitory effects on plants/ Arabidopsis thaliana. How these effects are initiated and which mechanisms are enrolled is not yet understood. Obviously the plant can survive/live with the bacteria in the soil, which suggest the existance of a regulatory mechanism/network that provide the possibility for coexistance with the bacteria. To shed light on this regulatory mechanism/network we performed a microarray anlaysis of Arabidopsis thaliana co-cultivated with two different rhizobacteria strains. In this study we used the ATH1 GeneChip microarray to investigate the transcriptional response of 4 to 5 days old Arabidopsis thaliana seedlings at 6 h, 12 h and 24 h exposure to volatiles of the rhizobacteria Serratia plymuthica HRO-C48 or Stenotrophomonas maltophilia R3089.
Project description:Volatiles of certain rhizobacteria can cause growth inhibitory effects on plants/ Arabidopsis thaliana. How these effects are initiated and which mechanisms are enrolled is not yet understood. Obviously the plant can survive/live with the bacteria in the soil, which suggest the existance of a regulatory mechanism/network that provide the possibility for coexistance with the bacteria. To shed light on this regulatory mechanism/network we performed a microarray anlaysis of Arabidopsis thaliana co-cultivated with two different rhizobacteria strains. In this study we used the ATH1 GeneChip microarray to investigate the transcriptional response of 4 to 5 days old Arabidopsis thaliana seedlings at 6 h, 12 h and 24 h exposure to volatiles of the rhizobacteria Serratia plymuthica HRO-C48 or Stenotrophomonas maltophilia R3089. Seedlings from Arabidopsis thaliana were harvested at different time points at exposure to volatiles of two different strains of bacteria. Samples were taken at the start of the experiment (T0) and after 6, 12 and 24 hours (T6, T12, T24 respectively). Two biological replicates from pooled seedlings (from 5 plates, from the respective time points) were used for RNA extraction and hybridization on Affymetrix microarrays (ATH1 GeneChip; GEO accsession GPL198).
Project description:Despite its significance to reproduction, fertility, sexually transmitted infections and various pathologies, the fallopian tube (FT) is relatively understudied. Strong evidence points to the FT as the tissue-of-origin of high grade serous ovarian cancer (HGSOC), the most fatal gynaecological malignancy. HGSOC precursor lesions arise specifically in the distal FT (fimbria) which is reported to be enriched in stem-like cells. Investigation of the role of FT stem cells in health and disease has been hampered by a lack of characterization of FT stem cells and lack of models that recapitulate stem cell renewal and differentiation in vitro. Using optimized organoid culture conditions to address these limitations, we found that FT stem cell renewal is highly dependent on WNT/β-catenin signaling and engineered endogenous WNT/β-catenin signaling reporter organoids to biomark, isolate and characterize putative FT stem cells. Using functional approaches as well as bulk and single cell transcriptomic analyses, we show that an endogenous hormonally-regulated WNT7A-FZD5 signaling axis is critical for self-renewal of human FT stem cells, and that WNT/β-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in ECM remodelling and integrin signaling pathways. In addition, we find that the WNT7A-FZD5 signaling axis is dispensable for mouse oviduct regeneration. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.
Project description:Despite its significance to reproduction, fertility, sexually transmitted infections and various pathologies, the fallopian tube (FT) is relatively understudied. Strong evidence points to the FT as the tissue-of-origin of high grade serous ovarian cancer (HGSOC), the most fatal gynaecological malignancy. HGSOC precursor lesions arise specifically in the distal FT (fimbria) which is reported to be enriched in stem-like cells. Investigation of the role of FT stem cells in health and disease has been hampered by a lack of characterization of FT stem cells and lack of models that recapitulate stem cell renewal and differentiation in vitro. Using optimized organoid culture conditions to address these limitations, we found that FT stem cell renewal is highly dependent on WNT/β-catenin signaling and engineered endogenous WNT/β-catenin signaling reporter organoids to biomark, isolate and characterize putative FT stem cells. Using functional approaches as well as bulk and single cell transcriptomic analyses, we show that an endogenous hormonally-regulated WNT7A-FZD5 signaling axis is critical for self-renewal of human FT stem cells, and that WNT/β-catenin pathway-activated cells form a distinct transcriptomic cluster of FT cells enriched in ECM remodelling and integrin signaling pathways. In addition, we find that the WNT7A-FZD5 signaling axis is dispensable for mouse oviduct regeneration. Overall, we provide a deep characterization of FT stem cells and their molecular requirements for self-renewal, paving the way for mechanistic work investigating the role of stem cells in FT health and disease.