Project description:Gas hydrates, also known as clathrates, are cages of ice-like water crystals encasing gas molecules such as methane (CH4). Despite the global importance of gas hydrates, their microbiomes remain mysterious. Microbial cells are physically associated with hydrates, and the taxonomy of these hydrate-associated microbiomes is distinct from non-hydrate-bearing sites. Global 16S rRNA gene surveys show that members of sub-clade JS-1 of the uncultivated bacterial candidate phylum Atribacteria are the dominant taxa in gas hydrates. The Atribacteria phylogeny is highly diverse, suggesting the potential for wide functional variation and niche specialization. Here, we examined the distribution, phylogeny, and metabolic potential of uncultivated Atribacteria in cold, salty, and high-pressure sediments beneath Hydrate Ridge, off the coast of Oregon, USA, using a combination of 16S rRNA gene amplicon, metagenomic, and metaproteomic analysis. Methods were developed to extract bacterial cellular protein from these sediments, as outlined below. Sample Description Three sediments samples were collected from beneath Hydrate Ridge, off the coast of Oregon, USA. Sediments were cored at ODP site 1244 (44°35.1784´N; 125°7.1902´W; 895 m water depth) on the eastern flank of Hydrate Ridge ~3 km northeast of the southern summit on ODP Leg 204 in 2002 and stored at -80°C at the IODP Gulf Coast Repository. E10H5 sediment is from 68.5 meters below sediment surface interface C1H2 sediment is from 2 meters below sediment surface interface. C3H4 sediment is from 21 meters below sediment surface interface.
Project description:The abundance of bacterial (AOB) and archaeal (AOA) ammonia oxidisers, assessed using quantitative PCR measurements of their respective a-subunit of the ammonia monooxygenase (amoA) genes, and ammonia oxidation rates were measured in four contrasting coastal sediments in the Western English Channel. Sediment was sampled bimonthly from July 2008 to May 2011, and measurements of ammonia oxidiser abundance and activity compared to a range of environmental variables including salinity, temperature, water column nutrients and sediment carbon and nitrogen content. Despite a higher abundance of AOA amoA genes within all sediments, and at all time-points, rates of ammonia oxidation correlated with AOB and not AOA amoA gene abundance. Other than ammonia oxidation rate, sediment particle size was the only variable that correlated with the spatial and temporal patterns of AOB amoA gene abundance, implying a preference of the AOB for larger sediment particles. This is possibly due to deeper oxygen penetration into the sandier sediments, increasing the area available for ammonia oxidation to occur, higher concentrations of inhibitory sulphide with pore waters of muddier sediments or a combination of both oxygen and sulphide concentrations. Similar to many other temporal studies of nitrification within estuarine and coastal sediments, decreases in AOB amoA gene abundance were evident during summer and autumn, with maximum abundance and ammonia oxidation rates occurring in winter and early spring. The lack of correlation between AOA amoA gene abundance and ammonium oxidation rate suggests an alternative role for amoA-carrying AOA within these sediments.
2013-08-24 | GSE50163 | GEO
Project description:Microbial population succession along the water columns and sediments in the Diamantina and Kermadec trenches
Project description:Coastal marine sediments, as locations of substantial fixed nitrogen loss, are very important to the nitrogen budget and to the primary productivity of the oceans. Coastal sediment systems are also highly dynamic and subject to periodic natural and anthropogenic organic substrate additions. The response to organic matter by the microbial community involved in nitrogen loss processes was evaluated using mesocosms of Chesapeake Bay sediments. Over the course of a 50-day incubation, rates of anammox and denitrification were measured weekly using 15N tracer incubations, and samples were collected for genetic analysis. Rates of both nitrogen loss processes and gene abundances associated with them corresponded loosely, probably because heterogeneities in sediments obscured a clear relationship. The rates of denitrification were stimulated more by the higher organic matter addition, and the fraction of nitrogen loss attributed to anammox slightly reduced. Furthermore, the large organic matter pulse drove a significant and rapid shift in the denitrifier community as determined using a nirS microarray, indicating the diversity of these organisms plays an essential role in responding to anthropogenic inputs. We also suggest that the proportion of nitrogen loss due to anammox in these coastal estuarine sediments may be underestimated due to temporal dynamics as well as from methodological artifacts related to conventional sediment slurry incubation approaches.
Project description:Chemical analysis of the compounds present in sediment, although informative, often is not indicative of the downstream biological effects that these contaminants exert on resident aquatic organisms. More direct molecular methods are needed to determine if marine life is affected by exposure to sediments. In this study, we used an aquatic multispecies microarray and q-PCR to investigate the effects on gene expression in juvenile sea bream (Sparus aurata) of two contaminated sediments defined as sediment 1 and 2 respectively, from marine areas in Northern Italy.
Project description:We have performed a microRNA expression analysis in urine sediments from 18 IgAN patients, 6 healthy subjects and 8 disease controls(including 4 membranous nephropathy patients and 4 minimal change disease patients). Pathologic diagnosis of all IgAN patients was included in grades I–V by light microscopy according to the grading system of Lee et al. And we have identified a set of deregulated microRNAs with potential diagnostic value to identify patients with IgAN.