Project description:Kermadec and Diamantina Trenches sediments Metagenomic assembly
| PRJNA1112617 | ENA
Project description:Microbial diversity in the Atacama and Kermadec trenches
| PRJNA856291 | ENA
Project description:Geographical distribution and driving force of bacteria and micro-eukaryotes in the sediments of the Kermadec and Diamantina Trenches
| PRJNA1062464 | ENA
Project description:Microbial diversity in self-made water columns
Project description:Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated microbial community profiles as well as directly assayed nitrogen cycling genes that encode the enzymes responsible for overall nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms responsible for production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that elevated rates of nitrous oxide production and consumption are the result of changes in community structure, not simply changes in microbial activity.
Project description:Crude oil is the one of the most important natural assets of humankind, yet it is a major environmental pollutant, in particular, in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, where the metabolic potential of indigenous populations towards the chronic pollution at a large scale is yet to be defined, particularly in anaerobic and micro-anaerobic marine sites. Here, we provided a novel insight into the active microbial metabolism in sediments from three environments along the coastline of Italy. Microbial proteomes exhibited prevalence in anaerobic metabolism, not related to the biodegradation directly, suggesting the strong limitation by oxygen induced by the carbon overload. They also point at previously unrecognized metabolic coupling between methane and methanol utilizers as well as sulfur reducers in marine petroleum polluted sediments.
Project description:To study the responses of microbial communities to short-term nitrogen addition and warming,here we examine microbial communities in mangrove sediments subjected to a 4-months experimental simulation of eutrophication with 185 g m-2 year-1 nitrogen addition (N), 3oC warming (W) and nitrogen addition*warming interaction (NW).