Project description:Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Using a mouse model mimicking pediatric antibiotic use, we found that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide altered both host and microbiota development. Early-life PAT accelerated total mass and bone growth, and resulted in progressive changes in gut microbiome diversity, population structure, and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. While control microbiota rapidly adapted to a change in diet, PAT slowed the ecological progression, with delays lasting several months in response to the macrolide. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment.
Project description:Mammalian species have co-evolved with intestinal microbial communities that can shape development and adapt to environmental changes, including antibiotic perturbation or nutrient flux. In humans, especially children, microbiota disruption is common, yet the dynamic microbiome recovery from early-life antibiotics is still uncharacterized. Using a mouse model mimicking pediatric antibiotic use, we found that therapeutic-dose pulsed antibiotic treatment (PAT) with a beta-lactam or macrolide altered both host and microbiota development. Early-life PAT accelerated total mass and bone growth, and resulted in progressive changes in gut microbiome diversity, population structure, and metagenomic content, with microbiome effects dependent on the number of courses and class of antibiotic. While control microbiota rapidly adapted to a change in diet, PAT slowed the ecological progression, with delays lasting several months in response to the macrolide. This study identifies key markers of disturbance and recovery, which may help provide therapeutic targets for microbiota restoration following antibiotic treatment. C57BL/6J mice received three antibiotic courses: at days 10-15, 28-31, and 37-40 of life, amoxicillin or tylosin.Livers were collected at age 22 weeks, RNA was extracted, and transcriptional differences were measured by microarray analysis.
Project description:The gut microbiome is an emerging factor in the neurobiology of disease. Blood-brain barrier (BBB) integrity is essential for proper brain function. However, the role the initial microbiome plays in BBB and brain development is unclear. In this study, we colonized germ-free pregnant mice with human full-term- or preterm-infant-derived gut microbiota, thereby establishing these communities in the resulting offspring. We discovered that mice harboring a full-term-associated microbiome exhibited stronger memory and learning capabilities and dramatically decreased early-life BBB permeability when compared to those with a prematurity-associated microbiome. Whole-brain single-cell RNA sequencing revealed downregulation of synaptic signaling genes in BBB cell types of mice with the prematurity-associated microbiome, indicating that microbiome maturity influences BBB transcriptional programs that support cognitive development. Comprehensive metagenomics and metabolomics uncovered bacterial populations and genomic pathways corresponding with decreased levels of circulating long-chain acylcarnitines and lysophosphatidylcholines in mice with the full-term-associated microbiome. Our findings highlight the microbiome as a therapeutic target for improving long-term neurodevelopmental outcomes due to its effect on the early-life BBB.
Project description:Normal aging is accompanied by escalating systemic inflammation. To comprehensively characterize the impact of aging on immune cells in the brain and periphery, we harvested immune cells from mouse spleen and brain tissues. Single cell sequencing was performed to compare the genetic signatures in these isolated immune cell subsets from spleen and brain tissues in young and aged mice. Our results demonstrate increased accumulations of immune cells such as natural killer (NK) cells in the aged brain as compared to the young brain. In addition, NK cells in the aged brain display augmented proliferation activity and cytotoxicity. RNA-sequencing of neuroblasts isolated from the aged brain revealed that aging induces dysregulated expression of genes related to DNA damage response and upregulation of senescence signatures.
Project description:Normal aging is accompanied by escalating systemic inflammation. To comprehensively characterize the impact of aging on immune cells in the brain and periphery, we harvested immune cells from mouse spleen and brain tissues. Single cell sequencing was performed to compare the genetic signatures in these isolated immune cell subsets from spleen and brain tissues in young and aged mice. Our results demonstrate increased accumulations of immune cells such as natural killer (NK) cells in the aged brain as compared to the young brain. In addition, NK cells in the aged brain display augmented proliferation activity and cytotoxicity. RNA-sequencing of neuroblasts isolated from the aged brain revealed that aging induces dysregulated expression of genes related to DNA damage response and upregulation of senescence signatures.
Project description:Genetic and environmental factors interact during sensitive periods early in life to influence mental health and disease via epigenetic processes such as DNA methylation. However, it is not known if DNA methylation changes outside the brain provide an 'epigenetic signature' of early-life experiences. Here, we employed a novel intra-individual approach by testing DNA methylation from buccal cells of individual rats before and immediately after exposure to one week of typical or adverse life experience. We find that whereas inter-individual changes in DNA methylation reflect the effect of age, DNA methylation changes within paired DNA samples from the same individual reflect the impact of diverse neonatal experiences. Genes coding for critical cellular–metabolic enzymes, ion channels and receptors were more methylated in pups exposed to the adverse environment, predictive of their repression. In contrast, the adverse experience was associated with less methylation on genes involved in pathways of death and inflammation as well as cell-fate related transcription factors, indicating their potential upregulation. Thus, intra-individual methylome signatures indicate large-scale transcription-driven alterations of cellular fate, growth and function.
Project description:We show that traumatic stress experienced by males in early postnatal life impairs memory in their offspring, blocks long-term potentiation (LTP) and favors long-term depression (LTD). These effects are accompanied by suppression of key molecular pathways involved in neuronal plasticity both at rest and after acute stress. Male mice were exposed to chronic traumatic stress in early postnatal life and were later bred to naM-CM-/ve females to produce second-generation offspring. Memory performance was evaluated in the offspring, and synaptic plasticity was examined in the hippocampus and the amygdala, brain areas important for memory formation. The two groups tested were 1: offspring of fathers which were stressed (MSUS - maternal separation unpredictable stress) and 2: offspring of non-stressed fathers (control). Genome-wide gene expression in hippocampus of these two groups was assessed at rest (this study) and after acute stress.