Project description:Scleractinian corals are the major builders of the complex structural framework of coral reefs. They live in tropical waters around the globe where they are frequently exposed to potentially harmful ultraviolet radiation (UVR). Coral eggs and early embryonic stages are thought to be the most sensitive life stages of corals to UVR given that they are highly buoyant and remain near the sea surface for prolonged periods of time. Here we analyzed gene expression changes in different larval stages of the Caribbean coral Montastraea faveolata to natural levels of UVR using high-density cDNA microarrays (10,930 clones). We found that larvae exhibit low sensitivity to natural levels of UVR during most time points analyzed as reflected by comparatively few transcriptomic changes in response to UVR. However, we identified a time window of high UVR sensitivity that coincides with the motile planula stage and the onset of larval competence. These processes have been shown to be affected upon UVR exposure, and the transcriptional changes we identified explain these observations well. Our analysis of differentially expressed genes indicates that UVR induces a stress response and affects the expression of neurogenesis-related genes that can be linked to swimming and settlement behavior at later stages. Taken together, our study provides further data to the impact of natural levels of UVR on coral larvae. Furthermore, our results might allow a better prediction of settlement and recruitment rates after coral spawning events based on UVR climate data.
Project description:We tested the thermal tolerance of coral larvae with heat-evolved and wild-type strains and explored the molecular mechanisms for the differential thermal tolerance with gene expression patterns. This archive provides the raw data of the RNA sequencing.
Project description:The potential to adapt to a changing climate depends in part upon the standing genetic variation present in wild populations. In corals, the dispersive larval phase is particularly vulnerable to the effects of environmental stress. Larval survival and response to stress during dispersal and settlement will play a key role in the persistence of coral populations. To test the hypothesis that larval transcription profiles reflect population specific responses to thermal stress, symbiont-free gametes of the scleractinian coral Montastraea faveolata were collected from Florida and Mexico and raised under normal and elevated temperatures. These populations have been shown to exchange larvae frequently enough to prevent significant differentiation of neutral loci. Differences among thousands of genes were simultaneously characterized using microarrays, allowing investigation of gene expression patterns among wild populations under stressful environmental conditions. Results show site-specific signatures of gene expression in larvae of a reef-building coral from different parts of its range (despite low genetic divergence), and reveal both local and general components of stress response during later stages of larval development. These results provide evidence of site-specific variation in the face of gene flow, which may represent functional genetic variation in different subpopulations, and support the idea that coral host genomes may indeed house the adaptive potential needed to deal with changing environmental conditions.