Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes.
Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes. These are all CGH arrays comparing DNA content between the indicated strain of interest and a wt control.
Project description:The vast landscape of RNA-protein interactions at the heart of post-transcriptional regulation remains largely unexplored. Indeed it is likely that, even in yeast, a substantial fraction of the regulatory RNA-binding proteins (RBPs) remain to be discovered. Systematic experimental methods can play a key role in discovering these RBPs - most of the known yeast RBPs lack RNA-binding domains that might enable this activity to be predicted. We describe here a new proteome-wide approach to identify RNA-protein interactions based on in vitro binding of RNA samples to yeast protein microarrays that represent over 80% of the yeast proteome. We used this procedure to screen for novel RBPs and RNA-protein interactions. A complementary mass spectrometry technique also identified proteins that associate with yeast mRNAs. Both the protein microarray and mass spectrometry methods successfully identify previously annotated RBPs, suggesting that other proteins identified in these assays might be novel RBPs. Of 35 putative novel RBPs identified by either or both of these methods, 12, including 75% of the eight most highly-ranked candidates, reproducibly associated with specific cellular RNAs. Surprisingly, most of the 12 newly discovered RBPs were enzymes. Functional characteristics of the RNA targets of some of the novel RBPs suggest coordinated post-transcriptional regulation of subunits of protein complexes and a possible link between mRNA trafficking and vesicle transport. Our results suggest that many more RBPs still remain to be identified and provide a set of candidates for further investigation.
Project description:A total of 12 WW domains from Saccharomyces cerevisiae were expressed and purified as fusion proteins to either GST or MBP. The fusion proteins were chemically biotinylated and applied to duplicate protein microarrays. Data processing revealed a total of 587 interactions between the domains and 207 proteins. Most of these interactions have not been previously observed. Keywords: Protein microarray analysis of yeast WW domains
Project description:The vast landscape of RNA-protein interactions at the heart of post-transcriptional regulation remains largely unexplored. Indeed it is likely that, even in yeast, a substantial fraction of the regulatory RNA-binding proteins (RBPs) remain to be discovered. Systematic experimental methods can play a key role in discovering these RBPs - most of the known yeast RBPs lack RNA-binding domains that might enable this activity to be predicted. We describe here a new proteome-wide approach to identify RNA-protein interactions based on in vitro binding of RNA samples to yeast protein microarrays that represent over 80% of the yeast proteome. We used this procedure to screen for novel RBPs and RNA-protein interactions. A complementary mass spectrometry technique also identified proteins that associate with yeast mRNAs. Both the protein microarray and mass spectrometry methods successfully identify previously annotated RBPs, suggesting that other proteins identified in these assays might be novel RBPs. Of 35 putative novel RBPs identified by either or both of these methods, 12, including 75% of the eight most highly-ranked candidates, reproducibly associated with specific cellular RNAs. Surprisingly, most of the 12 newly discovered RBPs were enzymes. Functional characteristics of the RNA targets of some of the novel RBPs suggest coordinated post-transcriptional regulation of subunits of protein complexes and a possible link between mRNA trafficking and vesicle transport. Our results suggest that many more RBPs still remain to be identified and provide a set of candidates for further investigation. Set of arrays organized by shared biological context, such as organism, tumors types, processes, etc.
Project description:This project aims to identify novel RNA binding proteins in the baker's yeast, Saccharomyces cerevisiae. Since interactions between RNAs and proteins may be transient, yeast cells were crosslinked with UV light at 254 nm which promotes the covalent link between proteins and RNAs. After this, polyadenylated mRNAs were purified via oligo(dT) coupled to magentic beads under stringet conditions. Finally, samples were subjected to mass spectrometry analysis. To rule out the possibility of RNA-independent binding we also analysed other samples: i) samples digested with RNase one; ii) samples where we performed competition assays with polyadenylic acid.
Project description:Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibition of a DNA damage response. In yeast, the silent information regulator (Sir) proteins bind to terminal telomeric repeats and to subtelomeric X-elements resulting in histone deacetylation and transcriptional silencing. Herein, we show that sir2 mutant strains display a very specific loss of a nucleosome residing in the X-element. Most yeast telomeres contain an X-element and the nucleosome occupancy defect in sir2 mutants is remarkably consistent between different telomeres.
Project description:Effect of either FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains Σ1278b and S288c - also the effect of FLO11 (MUC1) overexpression in the Σ1278b genetic background The aim of this study was to (1) perform a repeat analysis (to improve statistical analysis of these data sets) similar to data submitted previously (GSE17716) and also (2) study the effect of FLO11 over-expression on the transcriptome. Background: The outer cell wall of the yeast Saccharomyces cerevisiae serves as the interface with the surrounding environment and defines cell-cell and cell-surface interactions. Many of these interactions are facilitated by specific adhesins that belong to the Flo protein family. This family of mannoproteins has been implicated in phenotypes such as flocculation and substrate adhesion as well as pseudohyphal growth. Genetic data strongly suggest that individual Flo proteins are responsible for many specific cellular adhesion phenotypes. However, it remains unclear whether such phenotypes are determined solely by the nature of the expressed FLO genes or rather the result of a combination of FLO gene expression and other cell wall properties and cell wall proteins. Mss11p has been shown to be a central element of FLO1 and FLO11 gene regulation and acts together with the cAMP-PKA-dependent transcription factor Flo8p. We use genome wide transcript analysis to identify genes that are direct ly or indirectly regulated by Mss11p in the genetic backgrounds: Sigma1278b and S288c. Sigma 1278b is the strain historically used for the study of pseudohyphae (FLO11 expression) but we also included S288c as this strain is widely used in the research community and was used to determine the first full genome sequence (Thus correspond with SGD information). We also compare this data with transcriptome data from Sigma 1278b yeast over-expressing FLO8 to compare similarities/differences between these two signalling factors. Finally the effect of FLO11 over-expression in Sigma1278b on global transcription is studied so that we can differentiate between "direct" gene targets of Flo8p or Mss11p, and those regulated as a result by the "indirect" effect caused by modified cell wall Flo11p levels.