Project description:In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa for 3 and 7 days after which posterior gills 7 and 9 were sampled. Gills were then subsequently screened for differentially expressed gene transcripts using a 4,462-feature microarray developed by Towle et al. 2010.
Project description:In order to promote our understanding of the responses of green crab acid-base regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa for 3 and 7 days after which posterior gills 7 and 9 were sampled. Gills were then subsequently screened for differentially expressed gene transcripts using a 4,462-feature microarray developed by Towle et al. 2010. For each experimental block (gill7-day3, gill7-day7, gill9-day3, gill9-day7), 6 replicate samples were obtained for control (= 39 Pa) and elevated (= 400 Pa) pCO2 exposed animals. Each microarray slide included 4 technical replicates for each transcript and was hybridized with one control pCO2 (labelled with AlexaFluor555) and one elevated pCO2 cDNA (labelled with AlexaFluor647). Lowess-normalized gene expression was calculated as the log2 of the ratio of the fluorescence intensity of the CO2-treatment cDNA to the fluorescence intensity of the control cDNA (log2 ratio=F635/F532).
Project description:Two genetically distinct lineages of European green crabs (Carcinus maenas) were independently introduced to eastern North America, the first in the early 19th century and the second in the late 20th century. These lineages first came into secondary contact in southeastern Nova Scotia, Canada (NS), where they hybridized, producing latitudinal genetic clines. Previous studies have documented a persistent southward shift in the clines of different marker types, consistent with existing dispersal and recruitment pathways. We evaluated current clinal structure by quantifying the distribution of lineages and fine-scale hybridization patterns across the eastern North American range (25 locations, ~39 to 49°N) using informative single nucleotide polymorphisms (SNPs; n = 96). In addition, temporal changes in the genetic clines were evaluated using mitochondrial DNA and microsatellite loci (n = 9-11) over a 15-year period (2000-2015). Clinal structure was consistent with prior work demonstrating the existence of both northern and southern lineages with a hybrid zone occurring between southern New Brunswick (NB) and southern NS. Extensive later generation hybrids were detected in this region and in southeastern Newfoundland. Temporal genetic analysis confirmed the southward progression of clines over time; however, the rate of this progression was slower than predicted by forecasting models, and current clines for all marker types deviated significantly from these predictions. Our results suggest that neutral and selective processes contribute to cline dynamics, and ultimately, highlight how selection, hybridization, and dispersal can collectively influence invasion success.
Project description:Invasive species have been associated with significant negative impacts in their introduced range often outcompeting native species, yet the long-term evolutionary dynamics of biological invasions are not well understood. Hybridization, either among waves of invasion or between native and introduced populations, could alter the ecological and evolutionary impacts of invasions yet has rarely been studied in marine invasive species. The European green crab (Carcinus maenas) invaded eastern North America twice from northern and southern locations in its native range. Here we examine the frequency of hybridization among these two distinct invasions at locations from New Jersey, USA to Newfoundland, Canada using restriction-site-associated DNA sequencing (RAD-seq), microsatellite loci and cytochrome c oxidase subunit I mitochondrial DNA (mtDNA) sequences. We used Bayesian clustering and hybrid assignment analyses to investigate hybridization between the northern and southern populations. Of the samples analyzed, six locations contained at least one hybrid individual, while two locations were characterized by extensive hybridization, with 95% of individuals collected from Placentia Bay, Newfoundland being hybrids (mostly F2) and 90% of individuals from Kejimkujik, Nova Scotia being classified as hybrids, mostly backcrosses to the northern ecotype. The presence of both F2 hybrids and backcrossed individuals suggests that these hybrids are viable and introgression is occurring between invasions. Our results provide insight into the demographic and evolutionary consequences of hybridization between independent invasions, and will inform the management of green crabs in eastern North America.
Project description:Most hemoglobins serve for the transport or storage of O(2). Although hemoglobins are widespread in "entomostracan" Crustacea, malacostracans harbor the copper-containing hemocyanin in their hemolymph. Usually, only one type of respiratory protein occurs within a single species. Here, we report the identification of a hemoglobin of the shore crab Carcinus maenas (Malacostraca, Brachyura). In contrast to the dodecameric hemocyanin of this species, C. maenas hemoglobin does not reside in the hemolymph but is restricted to the gills. Immunofluorescence studies and cell fractioning showed that C. maenas hemoglobin resides in the membrane of the chief cells of the gill. To the best of our knowledge, this is the first time that a membrane-bound hemoglobin has been identified in eukaryotes. Bioinformatic evaluation suggests that C. maenas hemoglobin is anchored in the membrane by N-myristoylation. Recombinant C. maenas hemoglobin has a hexacoordinate binding scheme at the Fe(2+) and an oxygen affinity of P(50) = 0.5 Torr. A rapid autoxidation rate precludes a function as oxygen carrier. We rather speculate that, analogous to prokaryotic membrane-globins, C. maenas hemoglobin carries out enzymatic functions to protect the lipids in cell membrane from reactive oxygen species. Sequence comparisons and phylogenetic studies suggested that the ancestral arthropod hemoglobin was most likely an N-myristoylated protein that did not have an O(2) supply function. True respiratory hemoglobins of arthropods, however, evolved independently in chironomid midges and branchiopod crustaceans.
Project description:Genetic-environment associations are increasingly revealed through population genomic data and can occur through a number of processes, including secondary contact, divergent natural selection, or isolation by distance. Here, we investigate the influence of the environment, including seasonal temperature and salinity, on the population structure of the invasive European green crab (Carcinus maenas) in eastern North America. Green crab populations in eastern North America are associated with two independent invasions, previously shown to consist of distinct northern and southern ecotypes, with a contact zone in southern Nova Scotia, Canada. Using a RAD-seq panel of 9,137 genomewide SNPs, we detected 41 SNPs (0.49%) whose allele frequencies were highly correlated with environmental data. A principal components analysis of 25 environmental variables differentiated populations into northern, southern, and admixed sites in concordance with the observed genomic spatial structure. Furthermore, a spatial principal components analysis conducted on genomic and geographic data revealed a high degree of global structure (p < .0001) partitioning a northern and southern ecotype. Redundancy and partial redundancy analyses revealed that among the environmental variables tested, winter sea surface temperature had the strongest association with spatial structuring, suggesting that it is an important factor defining range and expansion limits of each ecotype. Understanding environmental thresholds associated with intraspecific diversity will facilitate the ability to manage current and predict future distributions of this aquatic invasive species.
Project description:Genomic studies of invasive species can reveal both invasive pathways and functional differences underpinning patterns of colonization success. The European green crab (Carcinus maenas) was initially introduced to eastern North America nearly 200 years ago where it expanded northwards to eastern Nova Scotia. A subsequent invasion to Nova Scotia from a northern European source allowed further range expansion, providing a unique opportunity to study the invasion genomics of a species with multiple invasions. Here, we use restriction-site-associated DNA sequencing-derived SNPs to explore fine-scale genomewide differentiation between these two invasions. We identified 9137 loci from green crab sampled from 11 locations along eastern North America and compared spatial variation to mitochondrial COI sequence variation used previously to characterize these invasions. Overall spatial divergence among invasions was high (pairwise FST ~0.001 to 0.15) and spread across many loci, with a mean FST ~0.052 and 52% of loci examined characterized by FST values >0.05. The majority of the most divergent loci (i.e., outliers, ~1.2%) displayed latitudinal clines in allele frequency highlighting extensive genomic divergence among the invasions. Discriminant analysis of principal components (both neutral and outlier loci) clearly resolved the two invasions spatially and was highly correlated with mitochondrial divergence. Our results reveal extensive cryptic intraspecific genomic diversity associated with differing patterns of colonization success and demonstrates clear utility for genomic approaches to delineating the distribution and colonization success of aquatic invasive species.
Project description:The European green crab (Carcinus maenas) is a crustacean species native to European and North African coastlines that has become one of the world's most successful marine invasive species. Targeted fishing programs aimed at removing green crabs from invaded ecosystems commonly use Fukui multi-species marine traps. Improving the efficiency of these traps would improve the ability to respond to green crab invasions. In this study, we developed four distinct trap modifications that were designed to facilitate the successful capture of green crabs, with the goal of improving the performance of the Fukui trap. We tested these modifications in situ during the summer of 2016 at two locations in Placentia Bay, Newfoundland. We discovered that three of our modified Fukui trap designs caught significantly more green crabs than the standard Fukui trap, increasing catch-per-unit-effort (CPUE) by as much as 81%. We conclude that our top-performing modifications have great potential for widespread use with existing Fukui traps that are being used for green crab removal efforts.
Project description:BackgroundEcdysis is an innate behaviour programme by which all arthropods moult their exoskeletons. The complex suite of interacting neuropeptides that orchestrate ecdysis is well studied in insects, but details of the crustacean ecdysis cassette are fragmented and our understanding of this process is comparatively crude, preventing a meaningful evolutionary comparison. To begin to address this issue we identified transcripts coding for neuropeptides and their putative receptors in the central nervous system (CNS) and Y-organs (YO) within the crab, Carcinus maenas, and mapped their expression profiles across accurately defined stages of the moult cycle using RNA-sequencing. We also studied gene expression within the epidermally-derived YO, the only defined role for which is the synthesis of ecdysteroid moulting hormones, to elucidate peptides and G protein-coupled receptors (GPCRs) that might have a function in ecdysis.ResultsTranscriptome mining of the CNS transcriptome yielded neuropeptide transcripts representing 47 neuropeptide families and 66 putative GPCRs. Neuropeptide transcripts that were differentially expressed across the moult cycle included carcikinin, crustacean hyperglycemic hormone-2, and crustacean cardioactive peptide, whilst a single putative neuropeptide receptor, proctolin R1, was differentially expressed. Carcikinin mRNA in particular exhibited dramatic increases in expression pre-moult, suggesting a role in ecdysis regulation. Crustacean hyperglycemic hormone-2 mRNA expression was elevated post- and pre-moult whilst that for crustacean cardioactive peptide, which regulates insect ecdysis and plays a role in stereotyped motor activity during crustacean ecdysis, was elevated in pre-moult. In the YO, several putative neuropeptide receptor transcripts were differentially expressed across the moult cycle, as was the mRNA for the neuropeptide, neuroparsin-1. Whilst differential gene expression of putative neuropeptide receptors was expected, the discovery and differential expression of neuropeptide transcripts was surprising. Analysis of GPCR transcript expression between YO and epidermis revealed 11 to be upregulated in the YO and thus are now candidates for peptide control of ecdysis.ConclusionsThe data presented represent a comprehensive survey of the deduced C. maenas neuropeptidome and putative GPCRs. Importantly, we have described the differential expression profiles of these transcripts across accurately staged moult cycles in tissues key to the ecdysis programme. This study provides important avenues for the future exploration of functionality of receptor-ligand pairs in crustaceans.