Project description:In order to further our understanding of the metabolic network of the malaria parasite, Plasmodium falciparum, we carried out a concurrent transcriptomic and metabolomic study of the parasite's intraerythrocytic developmental cycle. These microarray data were generated to compare the expression levels of metabolic enzymes to the concentrations of their associated metabolites over the 48-hour life cycle.
Project description:Transcriptomic Analysis of Cultured Sporozoites of P. falciparum RNA-seq reads from each of three developmental stages (2 replicates per sample) were mapped to the reference Plasmodium falciparum genome, and gene expression levels were calculated for each sample.
Project description:The time course transcriptome were generated in Plasmodium falciparum parasite of 3D7 strain by collecting RNA samples every 2 hours during 48 hours of the full intraerythrocytic developmental cycle.
Project description:In order to further our understanding of the metabolic network of the malaria parasite, Plasmodium falciparum, we carried out a concurrent transcriptomic and metabolomic study of the parasite's intraerythrocytic developmental cycle. These microarray data were generated to compare the expression levels of metabolic enzymes to the concentrations of their associated metabolites over the 48-hour life cycle. Sorbitol-synchronized Plasmodium falciparum (3D7 strain) was grown in tissue culture flasks in incubators according to standard protocols. Immediately after reinvasion, and at 8-hour intervals thereafter, parasites were harvested by centrifugation. For each timepoint, 0.5 mL of packed RBC (10% parasitemia) was pelleted by centrifugation, washed once in PBS and flash-frozen in liquid nitrogen. Total RNA isolation and amino-allyl cDNA labeling were as previously described (Bozdech et al., 2003). A pool of 3D7 total RNA from all intraerythrocytic developmental stages was generated and used as the reference sample. For DNA microarray hybridization, pool cDNA was coupled to Cy3 dye, while cDNA from an individual timepoint was coupled to Cy5 dye. DNA microarrays were scanned using an Axon 4200A scanner and images analyzed using Axon GenePix software (Axon Instruments, Union City, CA, USA). Microarray data were stored and analyzed using our in-house database PUMAdb (Princeton University MicroArray database). All data for individual arrays were normalized by a global normalization using unflagged features with >= 65% of pixels one or more standard deviations over local background. All unflagged spots were selected and extracted for further analysis. Data were filtered to remove oligos more than 1 datapoint missing across the timeseries, log2 transformed, mean centered, ordered by the timing of their peak expression level, and visualized with Java Treeview (Saldanha, 2004) (Table S3).
Project description:The time course transcriptome of Plasmodium falciparum 3D7 parasite strain was generated by collecting RNA samples every 2 hours during full Intraerythrocytic Developmental Cycle.
Project description:Epigenetic mechanisms have been poorly understood in Plasmodium falciparum, the causative agent of malaria. To elucidate stage specific epigenetic regulations in P. falciparum, we performed genome-wide mapping of various histone modifications, nucleosomes and RNA Polymerase II. Our comprehensive analysis suggest that transcription initiation and elongation are distinct in Plasmodium. In this study, by analyzing histone modifications, nucleosome occupancy and RNA Polymerase II (Pol II) at three different IEC developmental stages of Plasmodium; ring, trophozoite and schizont, we tried to unravel the epigenetic mechanism associated with gene regulation. Examination of H3K27me3, H3K4me3, H3K9me3, H3K14ac, H3K4me1, H3K79me3, H3K27ac, H3K4me2, H3K9ac, H4ac, RNA Pol II and Histone H3 at three different stages of Plasmodium falciparum
Project description:This experiment characterizes the transcriptome of the human malaria parasite, P. falciparum at 8 different stages of the intraerythrocytic cycle Examination of polyA selected RNA in Plasmodium falciparum 3D7 strain at 8 different stages using RNA-seq
Project description:Drug resistance in Plasmodium falciparum remains a challenge for the malaria eradication programs around the world. With the emergence of artemisinin resistance, the efficacy of the partner drugs in the artemisinin combination therapies (ACT) that include quinoline based drugs is becoming critical. So far only few resistance markers have been identified and verified from which only two ABC transmembrane transporters namely PfMDR1 and PfCRT have been experimentally verified. Another P. falciparum ABC transporter, the multidrug resistance-associated protein (PfMRP2) represents an additional possible factor of drug resistance in P. falciparum. In this study, we identify a parasite clone that is derived from the 3D7 P. falciparum strain and which shows increased resistance to chloroquine and mefloquine through the trophozoite and schizont stages. We demonstrate that the resistance phenotype is caused by a 4.1 kb deletion in the 5M-bM-^@M-^Y upstream region of the pfmrp2 gene that leads to an alteration in the pfmrp2 transcription that result in increased levels of PfMRP2 protein. These results also suggest the importance of putative promoter elements in regulation of gene expression during the P. falciparum intra-erythrocytic developmental cycle and the potential of such genetic polymorphisms to underlie drug resistance phenotypes. Presented here are the data from microarray-based genome-wide transcriptomic and genomic studies of the drug-sensitive and drug-resistant 3D7 clones 11C/wt and 6A/mut. 2 P. falciparum lab clones derived from 3D7 strain were harvested during the intra-erythrocytic cycle for genomic DNA. gDNA were extracted by phenol chloroform. Synthesis of labelled target DNA was carried out as previously described: Bozdech, Z., M. Llinas, B. L. Pulliam, E. D. Wong, J. Zhu & J. L. DeRisi, (2003) The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol 1: E5, and used in comparative genomic microarray hybridizations (CGH).
Project description:Epigenetic mechanisms have been poorly understood in Plasmodium falciparum, the causative agent of malaria. To elucidate stage specific epigenetic regulations in P. falciparum, we performed genome-wide mapping of various histone modifications, nucleosomes and RNA Polymerase II. Our comprehensive analysis suggest that transcription initiation and elongation are distinct in Plasmodium. In this study, by analyzing histone modifications, nucleosome occupancy and RNA Polymerase II (Pol II) at three different IEC developmental stages of Plasmodium; ring, trophozoite and schizont, we tried to unravel the epigenetic mechanism associated with gene regulation.