Project description:Nucleic acids in wastewater provide a rich source of data for detection and surveillance of microbes. We have longitudinally collected 116 RNA samples from a wastewater treatment plant in Berlin/Germany, from March 2021 to July 2022, and 24 DNA samples from May to July 2022. We tracked human astroviruses, enteroviruses, noroviruses and adenoviruses over time to the level of strains or even individual nucleotide variations, showing how detailed human pathogens can be observed using wastewater. For respiratory pathogens, a broad enrichment panel enabled us to detect waves of RSV, influenza, or common cold coronaviruses in high agreement with clinical data. By applying a profile Hidden Markov Model-based search for novel viruses, we identified more than 100 thousand novel transcript assemblies likely not belonging to known virus species, thus substantially expanding our knowledge of virus diversity. Phylogenetic analysis is shown for bunyaviruses and parvoviruses. Finally, we identify Hundreds of novel protein sequences for CRISPR-associated proteins such as Transposase B, a class of small RNA-guided DNA editing enzymes. Taken together, we present a longitudinal and deep investigation into wastewater-derived genomic sequencing data that underlines the value of sewage surveillance for public health, planetary virome research, and biotechnological potential.
Project description:Drought stress is the main environmental factor influencing hemp growth and yield. However, little is known about the response mechanism of hemp to drought stress. A total of 44.10 M tags and 8.91G bases were sequenced in the control hemp (CK) and drought stress hemp (DS) libraries. A total of 1292 differentially expressed genes (DEGs), including 883 up-regulated genes and 409 down-regulated genes, were identified. These results may contribute toward improving our understanding about the drought stress regulatory mechanism of hemp, and improving its drought tolerance ability.
Project description:RNA-seq samples from 3 species across a differentiation from induced pluripotent stem cells to neural progenitor cells were generated to study gene expression evolution. Briefly, previously generated urinary stem cell derived iPSCs of 3 human (Homo sapiens) individuals (3 clones), 1 gorilla (Gorilla gorilla) individual and fibroblast derived cynomolgus macaque (Macaca fascicularis) iPSCs of 2 individuals (4 clones) (Geuder et al. 2021) were differentiated to neural progenitor cells via dual-SMAD inhibition as three-dimensional aggregation culture (Chambers et al. 2009; Ohnuki et al. 2014). Bulk RNA-seq libraries of iPSCs and NPCs were generated using prime-seq protocol (Janjic et al. 2022).
Project description:Drought stress is the main environmental factor influencing hemp growth and yield. However, little is known about the response mechanism of hemp to drought stress. A total of 44.10 M tags and 8.91G bases were sequenced in the control hemp (CK) and drought stress hemp (DS) libraries. A total of 1292 differentially expressed genes (DEGs), including 883 up-regulated genes and 409 down-regulated genes, were identified. These results may contribute toward improving our understanding about the drought stress regulatory mechanism of hemp, and improving its drought tolerance ability. 3' tag-based DGE libraries were generated to exam the differentially expressed gene between drought-stressed and well-watered hemp
Project description:For the purpose of Covid-19 antibody testing, the human plasma samples acquired over a period of 310 days from August 18, 2021, to June 22, 2022, were subjected to DIA- LC-MS proteomics analysis.
Project description:During a proof-of-concept study, virome of millet, grown as weed was determined by small RNA HTS. As a result, from the pools of 20 randomly collected millet samples collected at two locations, we identified the presence of three viruses, two of them first time in Hungary. Based on our results we could only suspect that these viruses: wheat streak mosaic virus (WSMV), barley stripe mosaic virus (BYSMV) and barley virus G (BVG) could have been overwintered in millet or other monocotyledonous weeds growing at these fields. As a follow-up research, in the summer of 2021, we collected symptomatic leaves of several monocotyledonous plants at the same fields. This time the sampling was done in July. From the samples, small RNA HTS was carried out.