Project description:AMP-activated protein kinase (AMPK) stabilizes tubular cell metabolism and protects against renal fibrosis through promoting autophagy and mitochondrial homeostasis. Liver kinase B1 (LKB1) is the key regulator for AMPK activation. However, the direct activators of LKB1 are scarce in commercial. In this study, we report a novel LKB1 activator, the piericidin analogue S14 (PA-S14), which was isolated from the culture broth of a marine-derived Streptomyces strain by our group. PA-S14 binds with residue D176 in LKB1 kinase domain, and then induces LKB1 phosphorylated activation and its complex formation with MO25 and STRADα. Furthermore, PA-S14 promotes AMPK activation to enhance LC3B-II/LC3B-I ratio, trigger autophagosome formation and increase autophagic flux. PA-S14 exhibits perfect protective effects on stabilizing mitochondrial homeostasis, inhibiting tubular cell senescence, and retarding fibrogenesis in various CKD models (UUO, UIRI and adriamycin nephropathy models) and TGF-β-stimulated tubular cell culture. Transcriptomics sequencing and site-specific mutation analysis further prove that PA-S14 is a novel lead compound of LKB1 activator, which perfectly protects against renal fibrosis through inducing AMPK-mediated autophagy and mitochondrial homeostasis.
Project description:AMP-activated protein kinase (AMPK) stabilizes tubular cell metabolism and protects against renal fibrosis through promoting autophagy and mitochondrial homeostasis. Liver kinase B1 (LKB1) is the key regulator for AMPK activation. However, the direct activators of LKB1 are scarce in commercial. In this study, we report a novel LKB1 activator, the piericidin analogue S14 (PA-S14), which was isolated from the culture broth of a marine-derived Streptomyces strain by our group. PA-S14 binds with residue D176 in LKB1 kinase domain, and then induces LKB1 phosphorylated activation and its complex formation with MO25 and STRADα. Furthermore, PA-S14 promotes AMPK activation to enhance LC3B-II/LC3B-I ratio, trigger autophagosome formation and increase autophagic flux. PA-S14 exhibits perfect protective effects on stabilizing mitochondrial homeostasis, inhibiting tubular cell senescence, and retarding fibrogenesis in various CKD models (UUO, UIRI and adriamycin nephropathy models) and TGF-β-stimulated tubular cell culture. Transcriptomics sequencing and site-specific mutation analysis further prove that PA-S14 is a novel lead compound of LKB1 activator, which perfectly protects against renal fibrosis through inducing AMPK-mediated autophagy and mitochondrial homeostasis.
Project description:In this study, we describe the isolation and identification of Streptomyces isolates collected from traditional medicinal plants’ rhizosphere during a campaign in Hamedan Province, Iran. Traditional medicinal plants represent a rich and unique source for the isolation of Streptomyces and new antimicrobial compounds. This strain was isolated from the rhizosphere of Helichrysum rubicundum
Project description:To identify unique gene expression in cAMP supplemented Streptomyces coelicolor M1146 strain. The genes with different gene expression might be key genes to understand the effects of cAMP supplementation on the transcriptome of Streptomyces coelicolor M1146.
Project description:To identify unique gene expression in cAMP supplemented Streptomyces coelicolor M145 strain. The genes with different gene expression might be key genes to understand the effects of cAMP supplementation on the transcriptome of Streptomyces coelicolor M145.
Project description:Streptomyces bingchenggensis is a soil bacterium that produces milbemycins. Milbemycins and their derivatives are valuable biopesticides in the agricultural field. Owing to their advantages such as high efficiency and safety for human and animal,it was urgent to construct high-yield strain to ensure low production cost. To obtain genes closely correlated with milbemycin production, we have compared the whole genome microarray expression profiling of two strains (the parent one strain and high-yielding strain). In Streptomyces bingchenggensis, there are abundant exporters, which are responsible for transporting various substrates. In the result, some drug exporters were chosen to enhance production of milbemycin .