Project description:Manipulating the crop load in peach trees determines carbon supply and optimum balance between fruit yield and quality potentials. The impact of carbon supply on peach fruit quality was assessed in three development stages (S2, S3, S4) on fruit of equal maturity from trees that were carbon (C) starved (unthinned) and sufficient (thinned). Previous studies determined that primary metabolites of peach fruit mesocarp are mainly linked with developmental processes, thus, the secondary metabolite profile was assessed using non-targeted liquid chromatography mass-spectrometry (LC-MS). Carbon sufficient (C-sufficient) fruit demonstrated superior quality attributes as compared to C-starved fruit. Early metabolic shifts in the secondary metabolome appear to prime quality at harvest. Enhanced C-availability facilitated the increased and consistent synthesis of flavonoids, like catechin, epicatechin and eriodyctiol, via the phenylpropanoid pathway, providing a link between the metabolome and fruit quality, and serving as signatures of C-sufficiency during peach fruit development.
Project description:Manipulating the crop load in peach trees determines carbon supply and optimum balance between fruit yield and quality potentials. The impact of carbon supply on peach fruit quality was assessed in three development stages (S2, S3, S4) on fruit of equal maturity from trees that were carbon (C) starved (unthinned) and sufficient (thinned). Previous studies determined that primary metabolites of peach fruit mesocarp are mainly linked with developmental processes, thus, the secondary metabolite profile was assessed using non-targeted liquid chromatography mass-spectrometry (LC-MS). Carbon sufficient (C-sufficient) fruit demonstrated superior quality attributes as compared to C-starved fruit. Early metabolic shifts in the secondary metabolome appear to prime quality at harvest. Enhanced C-availability facilitated the increased and consistent synthesis of flavonoids, like catechin, epicatechin and eriodyctiol, via the phenylpropanoid pathway, providing a link between the metabolome and fruit quality, and serving as signatures of C-sufficiency during peach fruit development.
Project description:Five rootstock cultivars of differing vigor: vigorous (Atlas and Brights Hybrid 5), standard (Krymsk 86 and Lovell) and dwarfing (Krymsk 1) with Redhaven as scion were studied for their impact on internal fruit quality and maturity. Five years of data showed that average yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA), however, no difference was observed in fruit size across rootstocks. In 2019, a detailed peach fruit quality analysis on fruit of equal maturity (based on index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality. Twenty-five fruits from each rootstock were assessed for maturity [IAD and flesh firmness (FF)] and internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). To account for differences in light availability created by the varying levels of vigor, and its influence on the developing fruits internal quality, mid-canopy photosynthetic active radiation transmission (i.e., light availability) was collected across genotypes with a line quantum sensor. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.
Project description:Thinning is indispensable practice in peach cultivation aiming to reduce fruit number per plant, promoting sink-source balance and reducing competition among fruit, which results in bigger fruit and the improvement of other fruit-quality parameters. Inhibition of floral induction by GAs has been largely demonstrated and commercial products based on GAs have been used to this aim. We tested a product GA4/7 based in different moments after full bloom in peach to reduce the number of flowers in the following season. Return to bloom and transcriptome analysis were performed to identify the best moment for the treatment, increasing the product efficacy and understanding the product action at genetic level.
Project description:Virus elimination is indispensable for the maintenance of stone fruit plantations, because these pathogens can cause serious crop damage and crop losses. Currently we do not possess efficient plant protection methods against viruses therefore prevention has a prominent role. In order to prevent infections, pathogen-free propagation material production and application of effective diagnostic methods have essential role. Our examined peach samples derived from isolator houses and stock nurseries of Fruitculture Research Institute of NARIC. With the help of highly sensitive metagenomic diagnostic methods: such as next generation sequencing of small RNAs, we are able to detect all of the presenting pathogens within our samples. During preparation steps, total RNA was isolated from leaf samples, RNA pools were made from the varieties, and then small RNA libraries were prepared. Sequencing was performed on Illumina platform and we used CLC Genomics Workbench for the bioinformatics evaluation. Results were verified by RT-PCR and Northern-blot. PCR products were cloned into pJET vector and Sanger sequenced. As a result, we detected nectarine stem pitting-associated virus (NSPaV), peach associated luteovirus (PaLV) and also peach latent mosaic viroid (PLMVd) which presence has to be checked regularly. Moreover we proved the incidence of PLMVd and PaLV first time in Hungary. We suspect, that the source of the viral infection might be the propagation material, which was used as a base for the variety collection in this isolator house.
Project description:The fruit of melting-flesh peach cultivars produce high levels of ethylene caused by high expression of PpACS1, resulting in rapid fruit softening at the late-ripening stage. In contrast, the fruit of stony hard peach cultivars do not soften and produce little ethylene due to low expression of PpACS1. To elucidate the mechanism for suppressing PpACS1 expression in stony hard peaches, a microarray analysis was performed. Several genes that displayed similar expression patterns as PpACS1 were identified and shown to be IAA-inducible genes. Change in gene expression according to growth of fruits in 'melting peach M-bM-^@M-^XAkatsukiM-bM-^@M-^Y fruit sampled at 92, 98, 104 and 106 day after full bloom (DAB). Propylene induced gene expression stony peach M-bM-^@M-^XManamiM-bM-^@M-^Y and M-bM-^@M-^XOdorokiM-bM-^@M-^Y harvested at commercial maturity (Tatsuki et al., 2006).
Project description:A transcriptome analysis was applied on two peach (Prunus persica L.) cultivars with different sensitivity to low temperature regimes to identify cold-responsive genes that might be involved in tolerance to long low temperature storage. Peach fruit from ‘Morettini No2’ and ‘Royal Glory’, a sensitive and a tolerant, to chilling injury cultivars, respectively, were harvested at commercial maturity stage and allowed to ripen at room temperature (25°C) or subjected to 4 and 6-weeks of cold storage (0°C, 95% R.H.) followed by ripening at room temperature. Microarray experiments, employing the peach microarray platform (μ PEACH 1.0), were carried out by comparing harvested fruit against 4- and 6-week cold-stored fruit. The analysis identified 173 and 313 genes that were differentially expressed in ‘Morettini No2’ and ‘Royal Glory’ fruit after 4 weeks, respectively. However, the 6 weeks cold storage provoked a decrease in the total number of genes differentially expressed in both cultivars. RNA blot analysis validated the differential expression of certain genes showed in microarray data. Among these genes, two heat shock proteins (hsps), a putative β-D-xylosidase, an expansin, a dehydrin and a pathogenesis-related protein PR-4B precursor were induced during cold storage in both cultivars. The induction of hsps and the putative β-D-xylosidase appeared to be independent on the duration of postharvest treatment. On the other hand, transcript levels of lipoxygenase were quite constant during postharvest ripening, while a strong reduction or disappearance was observed after cold storage. A dehydration-induced RD22-like protein showed a reduction in the accumulation of transcripts during postharvest ripening independently on the temperature conditions. Overall, the current study shed some light on the molecular aspects of cold stress in peach fruit quality and identified some ripening and/or cold-induced genes which function need further elucidation.
Project description:We performed small RNA deep sequencing and identified 47 peach-specific and 47 known miRNAs or families with distinct expression patterns. Together, the identified miRNAs targeted 80 genes, many of which have not been reported previously. Like the model plant systems, peach has two of the three conserved trans-acting siRNA biogenesis pathways with similar mechanistic features and target specificity. Unique to peach, three of the miRNAs collectively target 49 MYBs, 19 of which are known to regulate phenylpropanoid metabolism, a key pathway associated with stone hardening and fruit color development, highlighting a critical role of miRNAs in regulation of peach fruit development and ripening. We also found that the majority of the miRNAs were differentially regulated in different tissues, in part due to differential processing of miRNA precursors. Up to 16% of the peach-specific miRNAs were differentially processed from their precursors in a tissue specific fashion, which has been rarely observed in plant cells. The miRNA precursor processing activity appeared not to be coupled with its transcriptional activity but rather acted independently in peach. Collectively, the data characterizes the unique expression pattern and processing regulation of peach miRNAs and demonstrates the presence of a complex, multi-level miRNA regulatory network capable of targeting a wide variety of biological functions, including phenylpropanoid pathways which play a multifaceted spatial-temporal role in peach fruit development. Identification of peach miRNAs and their targets from four different tissues