Project description:The rainbow trout (Oncorhynchus mykiss) is one of the most important aquaculture species worlwide. In this study, transcriptional profiling of skin by oligonucleotide microarray was applied to rainbow trout individuals infected with A. salmonicida, to identified enriched genes involved in pathogen response.
Project description:We investigated the effects of chronic TCDD exposure on global gene expression in developing rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout (0.18±0.01g) were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100ppb, and ten fish were sampled and pooled from each group for microarray experiments at 28 days after initiation of the exposure. Gene expression analysis was performed using the Genomics Research on All Salmonids Project (cGRASP) 16K cDNA microarrays. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including cellular process, metabolic process, biological regulation, and response to stimulus. In addition, TCDD caused leisons in multiple organ systems in juvenile rainbow, including skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney.
Project description:We investigated the effects of chronic TCDD exposure on global gene expression in developing rainbow trout (Oncorhynchus mykiss). Juvenile rainbow trout(0.18±0.01g) were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100ppb, and ten fish were sampled and pooled from 10 ppb group at 7, 14, 28 and 42 days for microarray experiments after initiation of the exposure. Gene expression analysis was performed using the Genomics Research on All Salmonids Project (cGRASP) 16K cDNA microarrays. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including response to stimulus, cell wall organization or biogenesis, growth and cell proliferation. In addition, TCDD caused leisons in multiple organ systems in juvenile rainbow, including skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney.
Project description:We constructed a targeted cDNA microarray consisting of 147 rainbow trout (Oncorhynchus mykiss) genes with known function to examine the transcriptional response to a standardized handling stress.
Project description:The aim of present study is to identify and quantify proteins involved in the events of fertilization and early embryo development using a label-free protein quantification method in rainbow trout (Oncorhynchus mykiss) as an economically important fish species in aquaculture.
Project description:A rapid decline in temperature poses a major challenge for poikilothermic fish. The gene expression of rainbow trout Oncorhynchus mykiss having undergone such a cold shock (0 °C) and a control (5 °C) were compared in a microarray-based study.
Project description:In the present work, we evaluated the effects of membrane-initiated cortisol actions in vivo in the proteome of rainbow trout (Oncorhynchus mykiss) skeletal muscle. Quantitative iTRAQ analyses were performed to examine proteomic changes in rainbow trout stimulated with physiological concentrations of cortisol and cortisol-BSA. A total of 873 proteins were identified, among which 38 proteins were commonly and differentially expressed under both conditions. Functional clustering analysis revealed an upregulation of proteins associated with mitochondria, metal-binding and secreted proteins.
Project description:The sustainable growth of fish aquaculture will require the procurement of non-marine feed sources. Glycerol is a potential feed supplement whose metabolism may spare the catabolism of dietary amino acids, thereby extending the use of the feed protein to other physiological functions such as growth. In the present study, the effects of dietary glycerol supplementation on the muscle and liver metabolomes of rainbow trout (Oncorhynchus mykiss) and European seabass (Dicentrarchus labrax) were evaluated. Fish juveniles were fed diets with 0%, 2.5%, and 5% glycerol. Muscle and liver aqueous fractions were extracted and 1H NMR spectra were acquired. Metabolite profiles derived from the 1H NMR signals were assessed using univariate and multivariate statistical analyses. The adenylate energy charge was determined in the muscle. For both species, the muscle metabolite profile showed more variability compared to that of the liver and was most perturbed by the 5.0% glycerol diet. For the liver metabolite profile, rainbow trout showed fewer differences compared to European seabass. No differences were observed in energy charge between experimental groups for either species. Thus, rainbow trout appeared to be less susceptible to tissue metabolite perturbations, compared to seabass, when the diet was supplemented with up to 5% glycerol.
Project description:Rainbow trout (Oncorhynchus mykiss) is an important aquaculture fish species that is farmed worldwide, and it is also the most widely cultivated cold water fish in China. This species, a member of the salmonidae family, is an ideal model organism for studying the immune system in fish. Two phenotypes of rainbow trout are widely cultured; wild-type rainbow trout with black skin (WR_S) and yellow mutant rainbow trout with yellow skin (YR_S). Fish skin is an important immune organ, however, little is known about the differences in skin immunity between WR_S and YR_S in a natural flowing water pond aquaculture environment, and very few studies were conducted to investigate the ceRNA mechanism for fish skin.
2021-08-17 | GSE181974 | GEO
Project description:Brain-gut transcriptome of juvenile rainbow trout (Oncorhynchus mykiss)