Project description:This project is designed for whole transcriptome sequencing of bacteria isolated from Rhizosphere of Wheat Plant, which has its impact on overall plant growth.
Project description:Plants and rhizosphere microbes rely closely on each other, with plants supplying carbon to bacteria in root exudates, and bacteria mobilizing soil-bound phosphate for plant nutrition. When the phosphate supply becomes limiting for plant growth, the composition of root exudation changes, affecting rhizosphere microbial communities and microbially-mediated nutrient fluxes. To evaluate how plant phosphate deprivation affects rhizosphere bacteria, Lolium perenne seedlings were root-inoculated with Pseudomonas aeruginosa 7NR, and grown in axenic microcosms under different phosphate regimes (330 uM vs 3-6 uM phosphate). The effect of biological nutrient limitation was examined by DNA microarray studies of rhizobacterial gene expression.
Project description:It has been performed a genome-wide analysis of gene expression of the root-colonizing bacterium Pseudomonas putida KT2440 in the rhizosphere of corn (Zea mays var. Girona. To identify reliable rhizosphere differentially expressed genes, rhizosphere populations of P. putida bacteria cells were compared with three alternative controls: i) planktonic cells growing exponentially in rich medium (LB), ii) planktonic cells in stationary phase in LB, and iii) sessile populations established in sand microcosms, under the same conditions used to grow inoculated corn plants.