Project description:Over expression of MHC Class l protein in skeletal muscle causes myositis. Phenotype after expression in young mice is more severe. We performed gene expression profiling on young and adult mice after over expression of self MHC class l protein in skeletal muscle
Project description:Over expression of MHC Class l protein in skeletal muscle causes myositis. Phenotype after expression in young mice is more severe. We performed gene expression profiling on young and adult mice after over expression of self MHC class l protein in skeletal muscle Muscle from young ( early) , adult (Late) and cntrol (control) mice , n=3 each group, was used for gene expression profiling
Project description:Satellite cells are responsible for the long-term regenerative capacity of adult skeletal muscle. The diminished muscle performance and regenerative capacity of aged muscle is thought to reflect progressive fibrosis and atrophy. Whether this reduction in muscle competency also involves a diminishment in the intrinsic regulation of satellite cell self-renewal remains unknown. We used microarray to identify gene expression changes underlying the marked reduction in the capacity of satellite cells to self-renew, contribute to regeneration and repopulate the niche as they age. Skeletal muscles from heterozygous Pax7-ZsGreen mice were isolated at defined stages: E17.5 (fetal - whole forelimb and hindlimb), postnatal day 21 (adolescent - hindlimb), 2-3 month old (young adult - hindlimb) and >1 year old (older adult - hindlimb) mice. ZsGreen-positive skeletal muscle satellite cells were isolated by FACS and pooled (fetal n=4, adolescent n=6, young adult n=8 and older adult n=8 mice).
Project description:Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with aging. We report that geriatric satellite cells, compared to old and adult cells, are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and this irreversibly affects their intrinsic regenerative and self-renewal capacities. We analyzed the global changes in gene expression occurring within muscle stem cells (satellite cells) in homeostatic conditions during physiological aging. Pure satellite cell populations from dissociated skeletal muscle from Young (2-3 months) and Adult (6 months) mice were isolated using a well-established flow cytometry protocol gating on integrin a7(+)/CD34(+) (positive selection) and Lin- (CD31, CD45, CD11b, Sca1) (negative selection).
Project description:Skeletal muscle aging results in a gradual loss of skeletal muscle mass, skeletal muscle function and decreased regenerative capacity, which can lead to sarcopenia and increased mortality. While the mechanisms underlying sarcopenia remain unclear, the skeletal muscle stem cell, or satellite cell, is required for muscle regeneration. Therefore, identification of signaling pathways affecting satellite cell function during aging may provide insights into therapeutic targets for combating sarcopenia. Here, we show that a cell-autonomous loss in self-renewal occurs via novel alterations in FGF and p38αβ MAPK signaling in old satellite cells. We further demonstrate that pharmacological manipulation of these pathways can ameliorate age-associated self-renewal defects. Thus, our data highlight an age-associated deregulation of a satellite cell homeostatic network and reveals potential therapeutic opportunities for the treatment of progressive muscle wasting. Satellite cells were isolated from young (3-6mo) and aged (20-25mo) adult mice; individual date files represent 2 independent pools of RNA from 4-8 mice at each timepoint.
Project description:Skeletal muscle dysfunction in survivors of pneumonia is a major cause of lasting morbidity that disproportionately affects older individuals. We found that skeletal muscle recovery was impaired in aged compared with young mice after influenza A virus-induced pneumonia. In young mice, recovery of muscle loss was associated with expansion of tissue-resident skeletal muscle macrophages and downregulation of MHC II expression, followed by a proliferation of muscle satellite cells. These findings were absent in aged mice and in mice deficient in Cx3cr1. Transcriptomic profiling of tissue-resident skeletal muscle macrophages from aged compared with young mice showed downregulation of pathways associated with phagocytosis and proteostasis, and persistent upregulation of inflammatory pathways. Consistently, skeletal muscle macrophages from aged mice failed to downregulate MHCII expression during recovery from influenza A virus induced pneumonia and showed impaired phagocytic function in vitro. Like aged animals, mice deficient in the phagocytic receptor Mertk showed no macrophage expansion, MHCII downregulation or satellite cell proliferation and failed to recover skeletal muscle function after influenza A pneumonia. Our data suggest that a loss of phagocytic function in a CX3CR1+ tissue-resident skeletal muscle macrophage population in aged mice precludes satellite cell proliferation and recovery of skeletal muscle function after influenza A pneumonia.
Project description:Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with aging. Here we report that geriatric satellite cells, compared to old cells, are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and this irreversibly affects their intrinsic regenerative and self-renewal capacities. We analyzed the global changes in gene expression occurring within muscle stem cells (satellite cells) in homeostatic conditions during physiological aging. Pure satellite cell populations from dissociated skeletal muscle from Young (2-3 months) and Geriatric (28-32 months) mice were isolated using a well-established flow cytometry protocol gating on integrin a7(+)/CD34(+) (positive selection) and Lin- (CD31, CD45, CD11b, Sca1) (negative selection).
Project description:Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline with aging and in progeric conditions. Here we report that geriatric satellite cells, compared to old cells, are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and this irreversibly affects their intrinsic regenerative and self-renewal capacities. We analyzed the global changes in gene expression occurring within muscle stem cells (satellite cells) in homeostatic conditions during physiological aging and progeria. Pure satellite cell populations from dissociated skeletal muscle from Young (2-3 months), Old (22-24 months), Geriatric (28-30 months), SAMR1 and SAMP8 mice were isolated using a well-established flow cytometry protocol gating on integrin a7(+)/CD34(+) (positive selection) and Lin- (CD31, CD45, CD11b, Sca1) (negative selection).
Project description:The loss of skeletal muscle mass during aging is a significant health concern linked to adverse outcomes in older individuals. Understanding the molecular basis of age-related muscle loss is crucial for developing strategies to prevent or reverse this debilitating condition. Long non-coding RNAs (lncRNAs) are a largely uncharacterized class of biomolecules that have been implicated in cellular homeostasis and dysfunction across a wide variety of tissues and cell types. To identify lncRNAs that might contribute to skeletal muscle aging we screened for lncRNAs whose expression was altered in vastus lateralis muscle from older compared to young adults. We identified FRAIL1 as an aging-induced lncRNA with high abundance in human skeletal muscle. In a cohort of healthy young and older adults, skeletal muscle FRAIL1 was most strongly expressed in older females and negatively associated with measures of muscle strength and mass. Forced expression of FRAIL1 in mouse tibialis anterior muscle elicits a dose-dependent reduction in skeletal muscle fiber size that is independent of changes in muscle fiber type. Furthermore, this reduction in muscle size is dependent on an intact region of FRAIL1 that is highly conserved across non-human primates. Unbiased transcriptional and proteomic profiling of the effects of FRAIL1 expression in mouse skeletal muscle revealed widespread changes in mRNA and protein abundance that recapitulate age-related changes in pathways and processes that are known to be altered in aging skeletal muscle. Taken together, these findings shed light on the intricate molecular mechanisms underlying skeletal muscle aging and implicate FRAIL1 in the reduction of muscle mass during this process.
Project description:Regeneration of skeletal muscle depends on a population of adult stem cells (satellite cells) that remain quiescent throughout life. Satellite cell regenerative functions decline in geriatric satellite cells, compared to old cells are incapable of maintaining their normal quiescent state in muscle homeostatic conditions, and this irreversibly affects their intrinsic regenerative and self-renewal capacities. In geriatric mice, resting satellite cells lose reversible quiescence by switching to an irreversible pre-senescence state, caused by derepression of p16INK4a. Young Bmi1-deficient satellite cells shares similar features. We analyzed the global changes in gene expression occurring within muscle stem cells (satellite cells) in homeostatic conditions during physiological aging. Pure satellite cell populations from dissociated skeletal muscle from WT and Bmi1-deficient mice were isolated using a well-established flow cytometry protocol gating on integrin a7(+)/CD34(+) (positive selection) and Lin- (CD31, CD45, CD11b, Sca1) (negative selection).