Project description:We performed shallow whole genome sequencing (WGS) on circulating free (cf)DNA extracted from plasma or cerebrospinal fluid (CSF), and shallow WGS on the tissue DNA extracted from the biopsy in order to evaluate the correlation between the two biomaterials. After library construction and sequencing (Hiseq3000 or Ion Proton), copy number variations were called with WisecondorX.
Project description:New and rapid diagnostic methods are needed for the detection of antimicrobial resistance to aid in the curbing of drug-resistant infections. Targeted LC-MS/MS is a method that could serve this purpose, as it can detect specific peptides of resistance mechanisms with high accuracy. In the current study, we aimed to develop an accurate, rapid and high-throughput targeted LC-MS/MS assay based on parallel reaction monitoring for detection of the most prevalent aminoglycoside modifying enzymes and 16S ribosomal RNA methyltransferases in E. coli and K. pneumoniae that confer resistance to the most commonly used aminoglycosides. Specific tryptic peptides needed for detection were selected and validated for AAC(3)-Ia, AAC(3)-II, AAC(3)-IV, AAC(3)-VI, AAC(6’)-Ib, AAC(6’)-Ib-cr, ANT(2”)-I, APH(3’)-VI, ArmA, RmtB, RmtC and RmtF. In total, 205 different isolates containing different aminoglycoside resistance mechanisms that consisted mostly of E. coli and K. pneumoniae were selected for assay development and validation. MS results were automatically analyzed and were compared to WGS results which were regarded as the reference. The average sensitivity and specificity for the detection of the different mechanisms by LC-MS/MS compared to WGS was 95.1 % and 98.0 %, respectively. Furthermore, MS results were also used to predict resistance and susceptibility to gentamicin, tobramycin and amikacin in only the E. coli and K. pneumoniae isolates (n=191). The category interpretations were correctly predicted for gentamicin in 97.4 % of the isolates, for tobramycin in 97.4 % of the isolates, and for amikacin in 82.7 % of the isolates. The current study shows that targeted LC-MS/MS can be applied for accurate and rapid detection of aminoglycoside resistance mechanisms.
Project description:Clonal emergence is a major driver for changes in bacterial disease epidemiology. Recently, it has been proposed that episodic emergence of novel, hypervirulent clones of group A Streptococcus (GAS) results from horizontal gene transfer (HGT) and recombination events leading to increased expression of the cytotoxins Nga (NADase) and SLO (streptolysin O). We previously described a gene fusion event involving the gene encoding the GAS M protein (emm) and an adjacent M-like protein (enn) in the emm4 GAS population, a GAS emm type that lacks the hyaluronic acid capsule. Using whole genome sequencing of a temporally and geographically diverse set of 1,127 isolates, we discovered that the North American emm4 GAS population has undergone clonal replacement with emergent GAS strains completely replacing historical isolates by 2017. Emergent emm4 GAS strains were defined by a handful of small genetic variations, including the emm-enn gene fusion, and showed a marked in vitro growth defect compared to historical strains. In contrast to other previously described GAS clonal emergence events, emergent emm4 GAS lacked significant HGT events and showed no significant increase in transcript levels of nga/slo toxin gene via RNA sequencing and quantitative real-time PCR analysis relative to historic strains. Despite the in vitro growth differences, emergent emm4 GAS strains demonstrated hypervirulence in mouse and ex vivo growth in human blood compared to historical strains. Thus, these data detail the emergence and dissemination of a hypervirulent acapsular GAS clone defined by small genetic variation thereby defining a novel model for GAS strain replacement.
Project description:Whole genome sequencing (WGS) of tongue cancer samples and cell line was performed to identify the fusion gene translocation breakpoint. WGS raw data was aligned to human reference genome (GRCh38.p12) using BWA-MEM (v0.7.17). The BAM files generated were further analysed using SvABA (v1.1.3) tool to identify translocation breakpoints. The translocation breakpoints were annotated using custom scripts, using the reference GENCODE GTF (v30). The fusion breakpoints identified in the SvABA analysis were additionally confirmed using MANTA tool (v1.6.0).
Project description:Despite high vaccination coverage, pertussis is on the rise in many countries including Czech Republic. To better understand B. pertussis resurgence we compared the changes in genome structures between Czech vaccine and circulating strains and subsequently, we determined how these changes translated into global transcriptomic and proteomic profiles. The whole-genome sequencing revealed that both historical and recent isolates of B. pertussis display substantial variation in genome organization and cluster separately. The RNA-seq and LC-MS/MS analyses indicate that these variations translated into discretely separated transcriptomic and proteomic profiles. Compared to vaccine strains, recent isolates displayed increased expression of flagellar genes and decreased expression of polysaccharide capsule operon. Czech strains (Bp46, K10, Bp155, Bp318 and Bp6242)exhibited increased expression of T3SS and sulphate metabolism genes when compared to Tohama I. In spite of 50 years of vaccination the Czech vaccine strains (VS67, VS393 and VS401) differ from recent isolates to a lesser extent than from another vaccine strain Tohama I.