ABSTRACT: Microbial diversity associated with the rhizosphere and roots of two plants in a constructed wetland treatment system for oil sand process-affected water remediation
Project description:Water microbial communities in a constructed wetland treatment system for oil sand process-affected water remediation
| PRJNA1118264 | ENA
Project description:Sediment microbial diversity in a constructed wetland treatment system for oil sand process-affected water remediation
| PRJNA1119409 | ENA
Project description:Metagenomes of Carex aquatilis rhizosphere and root samples from a pilot-scale constructed wetland treatment system for the remediation of oil sands process-affected water
| PRJNA1045646 | ENA
Project description:Constructed wetland for cyanotoxins remediation bacterial community dynamics
| PRJNA986856 | ENA
Project description:constructed wetland-microbial electrolysis cell system metagenome
Project description:Plant roots perceive neighbouring roots even when resource depletion is low. The transcriptomic response to the presence or absence of an inferior competitor (Hieracium pilosella) is therefore examined in roots of A. thaliana. The experiment was set up in pots filled with non-sterile sand, that allowed to sample roots of eight week old Arabidopsis plants. 3 biological replicates per treatment were examined. Each of these replicates represents 3 pooled samples from individual plants.
Project description:The regulatory effects of uneven phosphorus supplies on phosphorus transport in soybean roots is still unclear. To further analyze the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots and the effects of uneven phosphorus application on the physiological mechanism of phosphorus transport in soybean roots, dual-root soybean plants were prepared via grafting, and a sand culture experiment was performed.
2022-10-14 | PXD035894 | Pride
Project description:PAH-Degrading Bacteria from Oil Sands Process-Affected Water
Project description:Frost is a major abiotic stress limiting plant growth and development. Climate change models predict an increase in the magnitude and frequency of late-frost events, which, together with an observed loss of soil insulation, will significantly damage roots. To withstand freezing stress, plants have evolved an adaptative process known as cold acclimation. While this process is well documented, it is known that the plant response to multiple stresses is unique and cannot be deduced from the response to each stress taken separately. Here, we investigate the impact of long-term metal exposure on the cold acclimation of Salix viminalis roots. To do so, we used physiological, transcriptomic and proteomic approaches. We found that while metal exposure significantly affected plants morphology and physiology, it did not impede cold acclimation. The impact of the simultaneous exposure to metals and cold acclimation on the transcriptome was unique, while at the proteomic level, the cold acclimation component seemed to be dominant. Further analysis revealed that metals strongly and negatively impacted the cellular antioxidant system. While this should have led to a loss of frost tolerance, it was not observed. A group of proteins was identified that could have played a role in compensating the impediment of the antioxidative system in metal-exposed roots.
Project description:We monitored the transcriptomic response of roots and leaves of Triticum aestivum (cv Chinese Spring) at 2 months following the root inoculation by Azospirillum brasilense sp245 or Burkholderia graminis C4D1M. Plants were grown in pot containing a solid substrate (sand+soil) and 3 plants per pot, conditions in triplicates, in greenhouse conditions, and inoculated at seedling stage with OD 1 washed bacterial culture.