Project description:The major focus of Dr. Argueso's research is to characterize the carbohydrate portion of the different mucins expressed by the ocular surface epithelia as well as the enzymes involved with their synthesis, and to determine whether the alteration of mucin glycosylation is associated with ocular surface disease.
2011-03-02 | GSE27593 | GEO
Project description:Ocular Surface Microbiome and Rhythms
Project description:The major focus of Dr. Argueso's research is to characterize the carbohydrate portion of the different mucins expressed by the ocular surface epithelia as well as the enzymes involved with their synthesis, and to determine whether the alteration of mucin glycosylation is associated with ocular surface disease. Highly glycosylated mucins on the ocular surface (cornea and conjunctiva) are the first line of defense of the eye against injury and infection. Changes in O-glycosylation of mucins may cause ocular surface disorders, such as dry eye. Gene expression patterns in the conjunctival epithelium of three normal subjects were analyzed. The three subjects have the same ABO-blood-group. For each donor, conjunctival cells were obtained by impression cytology. Conjunctival impression cytology was performed on each eye two times with a one-week interval. Conjunctival cells obtained from each individual were pooled and the RNA isolated. All three samples were hybridized to the custom designed CFG GLYCOv2 glycogene array.
Project description:Dry eye is a common ocular inflammatory disorder characterized by tear film instability and reduced tear production. There is increasing evidence that homeostasis of the ocular surface is impacted by the intestinal microbiome. We are interested in investigating the potential role of microbially produced small molecules in mediating the interaction between the intestinal microbiota and the ocular surface. One such molecule is butyrate, a short-chain fatty acid (SCFA) produced by certain members of the gut microbiota through fermentation of dietary fiber. We have shown that oral administration of tributyrin, a prodrug form of butyrate, is protective of the ocular surface in mice undergoing desiccating stress. To gain insight into the mechanism, we analyzed gene expression in conjunctival tissue from mice treated with either tributyrgn or vehicle control.