Project description:Chitin soil amendment is known to improve soil quality, plant growth and plant stress resilience, but the underlying mechanisms are not well understood. In this study, we monitored chitin’s effect on lettuce physiology every two weeks through an eight-week growth period, analyzed the early transcriptional reprogramming and related metabolomic changes of lettuce, in response to crab chitin treatment in peat-based potting soil. In commercial growth conditions, chitin amendment still promoted lettuce growth, increased chlorophyll content, the number of leaves and crop head weight from week six. The flavonoid content in lettuce leaves was altered as well, showing an increase at week two but a decrease from week six. Transcriptomic analysis showed that over 300 genes in lettuce root were significant differentially expressed after chitin soil treatment. Gene Ontology-term (GO) enrichment analysis revealed statistical overrepresentation of GO terms linked to photosynthesis, pigment metabolic process and phenylpropanoid metabolic process. Further analysis of the differentially expressed genes (DEGs) showed that the flavonoid pathway is mostly upregulated whereas the bifurcation of upstream phenylpropanoid pathway towards lignin biosynthesis is mostly downregulated. Metabolomic analysis revealed the upregulation of salicylic acid, chlorogenic acid, ferulic acid, and p-coumaric acid in chitin treated lettuce seedlings. These phenolic compounds mainly influence the phenylpropanoid biosynthesis pathway and may play important roles in plant defense reactions. Our results suggest that chitin soil amendments might activate induced resistance by priming lettuce plants and promote lettuce growth via transcriptional changes.
Project description:Trichoderma harzianum CECT 2413 expression in liquid basal medium and in the presence of glucose, chitin or tomato plants. Four different experimental conditions were carried out: basal (MS), glucose (MS-G), chitin (MS-Q) and tomato plant (MS-P). Two biological replicates were analyzed by microarray for each experimental condition. Three independent cultures of mycelium were pooled for each biological replicate.
Project description:Iron (Fe) deficiency is a yield-limiting factor for a variety of field crops across the world and generally results from the interaction of limited soil Fe bioavailability and susceptible genotype cultivation. Tomato, a Strategy I, model plant for Fe deficiency, is an important economical crop. Tomato responses in order to improve Fe uptake are based on acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells.
Project description:Iron (Fe) deficiency is a yield-limiting factor for a variety of field crops across the world and generally results from the interaction of limited soil Fe bioavailability and susceptible genotype cultivation. Tomato, a Strategy I, model plant for Fe deficiency, is an important economical crop. Tomato responses in order to improve Fe uptake are based on acidification of rhizosphere, reduction of Fe3+ to Fe2+ and transport of Fe2+ into the cells. Transcriptional profile obtained by roots (27-d) of 21-d-old tomato plants starved of iron for an additional week was compared with the transcriptional profile obtained for roots (27-d) of 21-d-old tomato plants grown for an additional week at 100 M-NM-<M Fe. Tomato plants were hydroponically grown in both cases. Three different biological replicates were used for each sample repeating the experiment three times. All samples were obtained pooling roots of six plants (27-d-old).
Project description:Soilborne fungal pathogens cause devastating yield losses, are highly persistent and difficult to control. To culminate infection, these organisms must cope with limited availability of iron. Here we show that the bZIP protein HapX functions as a key regulator of iron homeostasis and virulence in the vascular wilt fungus Fusarium oxysporum. Deletion of hapX does not affect iron uptake, but causes derepression of genes involved in iron-consuming pathways, leading to impaired growth under iron-depleted conditions. F. oxysporum strains lacking HapX are reduced in their capacity to invade and kill tomato plants and immunodepressed mice. The virulence defect of ΔhapX on tomato plants is exacerbated by coinoculation of roots with a biocontrol strain of Pseudomonas putida, but not with a siderophore-deficient mutant, indicating that HapX contributes to iron competition of F. oxysporum in the tomato rhizosphere. These results establish a conserved role for HapX-mediated iron homeostasis in fungal infection of plants and mammals.
Project description:Elevated atmospheric CO2 can influence the structure and function of rhizosphere microorganisms by altering root growth and the quality and quantity of compounds released into the rhizosphere via root exudation. In these studies we investigated the transcriptional responses of Bradyrhizobium japonicum cells growing in the rhizosphere of soybean plants exposed to elevated atmospheric CO2. The results of microarray analyses indicated that atmospheric elevated CO2 concentration indirectly influences on expression of large number of Bradyrhizobium genes through soybean roots. In addition, genes involved in C1 metabolism, denitrification and FixK2-associated genes, including those involved in nitrogen fixation, microanaerobic respiration, respiratory nitrite reductase, and heme biosynthesis, were significantly up-regulated under conditions of elevated CO2 in the rhizosphere, relative to plants and bacteria grown under ambient CO2 growth conditions. The expression profile of genes involved in lipochitinoligosaccharide Nod factor biosynthesis and negative transcriptional regulators of nodulation genes, nolA and nodD2, were also influenced by plant growth under conditions of elevated CO2. Taken together, results of these studies indicate that growth of soybeans under conditions of elevated atmospheric CO2 influences gene expressions in B. japonicum in the soybean rhizosphere, resulting in changes to carbon/nitrogen metabolism, respiration, and nodulation efficiency.